Consider the following code to compute the square of a number \(n \geq 0 \).

```java
/** computes the square of a number
 * @param n the number to be squared
 * @return n*n
 * @pre n >= 0
 * @post returns n*n
 */
public static int square(int n) {
    int ret = 0;
    int odd = 1;
    for (int i = 1; i <= n; i++) {
        ret += odd;
        odd += 2;
    }
    return ret;
}
```

1. What can you say about the value of \(ret \) after the loop has iterated \(k \) times?

_**Hint:** trace the loop execution for some small values of \(n \)

_**Hint #2:** we’re looking for a very simple statement about the loop

Your answer: After the loop iterates \(k \) times, \(ret \) holds the value \(k^2 \).

2. Prove by induction that the above method correctly returns the square of \(n \). Remember to write all parts of an inductive proof. (You can use the back of the paper if you run out of room)

_**Hint:** you may want to use the fact that \((k+1)^2 = k^2 + (2k + 1)\)

_**Answer below:**

We’ll prove by induction that after the loop iterates \(n \) times, \(ret \) stores the value \(n^2 \). Since we then return \(ret \), the correct value is returned.

Base case: after the loop iterates 0 times, \(ret \) stores 0, which is \(0^2 \).

Inductive Hypothesis: For some \(k \geq 0 \), after the loop iterates \(k \) times, \(ret \) stores the value \(k^2 \).

Inductive Step: By the inductive hypothesis, after the loop iterates \(k \) times, \(ret \) stores the value \(k^2 \). Let’s say it iterates one more time.

Since the loop has iterated \(k \) times, \(odd \) stores the value \(1 + 2k \) at the beginning of the \(k + 1 \)th loop iteration. In the \(k + 1 \)st iteration, the only change to \(ret \) is \(ret += odd \). Since \(ret \) is \(k^2 \) (by the inductive hypothesis) and \(odd \) is \(1 + 2k \) at the beginning of the loop, after this line is run \(ret \) stores \(k^2 + (2k + 1) = (k + 1)^2 \). Therefore, after the \(k + 1 \)st iteration, \(ret \) stores the value \((k + 1)^2\), and the inductive hypothesis is proven for \(k + 1 \).