Practice Quiz 5

CSCI 136: Spring 2022
Your name: \qquad
This week's quizzes cover readings, handouts, labs, and lecture materials up to and including Monday $3 / 7$. Answer the following questions as practice for your graded quiz on Friday.

The following equation can be proven by induction. For all $n \geq 1$,

$$
1+4+16+64+\ldots+4^{n}=\left(4^{n+1}-1\right) / 3
$$

We've completed part of an inductive proof below. Fill in the missing details.

Prove the base case:
Your answer:
For $n=0$, we have that $1=\left(4^{1}-1\right) / 3$.
(Alternative solution:)
For $n=1$, we have that $1+4=5=\left(4^{2}-1\right) / 3$.

State the inductive hypothesis: For some k,
Your answer:

$$
1+4+16+\ldots+4^{k}=\left(4^{k+1}-1\right) / 3
$$

Now, we prove the inductive step. As a first step in our proof, we show that

$$
1+4+16+\ldots+4^{k}+4^{k+1}=\left(4^{k+1}-1\right) / 3+4^{k+1}
$$

Why is the above statement true?
Your answer: We assume the inductive hypothesis; then, we add 4^{k+1} to both sides.
With the above equation in hand, we can manipulate the right hand side algebraically, obtaining

$$
\begin{gathered}
1+4+16+\ldots+4^{k}+4^{k+1}=\left(4^{k+1}-1\right) / 3+4^{k+1} \\
=\left(4^{k+1}-1+3 \cdot 4^{k+1}\right) / 3 \\
=\left(4 \cdot 4^{k+1}-1\right) / 3 \\
=\left(4^{k+2}-1\right) / 3
\end{gathered}
$$

Since our final equation matches the form of the original equation, where $n=k+1$, we have shown by induction for all $n \geq 1$, that

$$
1+4+16+64+\ldots+4^{n}=\left(4^{n+1}-1\right) / 3
$$

