Graph Terminology

CSCI 136: Spring 2022
___Definitions

Walk A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges $u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v$ such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

Path A path is a walk with no repeated edge.
Simple Path A simple path is a path with no repeated vertex.
Closed Walk A closed walk in a graph $G=(V, E)$ is a walk $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}$ such that $v_{0}=v_{k}$. In other words, in a closed walk, the ending vertex is the same as the starting vertex.

Circuit A circuit is a closed walk with no repeated edge. Alternatively, it is a path where $v_{0}=v_{k}$.
Cycle A cycle is a closed walk with no repeated vertex except the starting vertex. Alternatively, it is a simple path where $v_{0}=v_{k}$.

Walk Length The length of a walk is the number of edges in the sequence.
Degree The degree of a vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
Adjacent Two vertices are adjacent if and only if they share an edge.
Incident A vertex is incident to an edge if the vertex is one of the endpoints of the edge.
In-degree The in-degree of a vertex v on a directed graph, in- $\operatorname{deg}(v)$, is the number of incoming edges incident to v.

Out-degree The out-degree of a vertex v on a directed graph, out-deg (v), is the number of outgoing edges incident to v.

Reachable A vertex v is reachable from vertex u in a graph $G=(V, E)$ if there is a path from u to v. In an undirected graph, if v is reachable from u, then u is reachable from v.

Connected An undirected graph $G=(V, E)$ is connected if for every pair of vertices u, v in G, v is reachable from u.

Connected Component The set of all vertices reachable from v in $G=(V, E)$, along with all edges of G connecting any two of them, is called the connected component of v. The connected component is itself a graph.

