
CSCI 136: 
Data Structures 

and 
Advanced Programming

Instructors: Dan & Bill J

Lecture 32

Graph and course wrap-up

Announcements

One last week for quiz/activity/feedback 

Submit all “soft” labs by May 19 (end of 
reading period) 

Midterm resubmission: also due May 19 

Final exam: May 20-25

Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these forms.  
Please take your time and write thoughtful responses.

Your feedback is very valuable to us!



Purpose of Blue Sheets

Student comments on the blue sheets […] are solely for your 
benefit. They are not made available to department or 
program chairs, the Dean of the Faculty, or the CAP for 
evaluation purposes. 

—Office of the Provost, Williams College

Purpose of SCS Forms

“[T]he SCS provides instructors with feedback regarding their 
courses and teaching. The faculty legislation governing the 
SCS provides that SCS results are made available to the 
appropriate department chair, the Dean of the Faculty, and 
at appropriate times, to members of the Committee on 
Appointments and Promotions (CAP). The results are 
considered in matters of faculty reappointment, tenure, and 
promotion.” 

—Office of the Provost, Williams College

Blue sheet prompts:

* Did you look forward to coming to class?

* What course topic did you enjoy the most? 

* What course topic did you least enjoy? Do you think 
that it was valuable to learn anyway?

* Are there other aspects of the course that you liked 
or disliked?  (E.g., office hours, TAs, assignments, 
course structure, meeting times, etc.)  Feel free to 
suggest alternatives.

Outline

Graph applications: 

•shortest paths 

•traveling salesperson 

Semester recap 

Notes about final exam 

Next steps



Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path 
between two vertices in a graph such that the sum of the 
weights of its constituent edges is minimized.

Applications Applications



Applications Applications

Dijkstra’s algorithm

• I n v e n t e d b y Ed s g a r 
Dijkstra in 1959. 

• The original version used 
a min-priority queue. 

• Designed using pencil 
and paper; algorithm was 
intended to demonstrate 
to non-technical people 
how computers could be 
useful.

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

Looking for path from A to F.

A undef
B undef
C undef
D undef
E undef
F undef
G undef



 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

A 0
B 4
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C undef
D undef
E undef
F undef
G undef

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef



 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10



 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

u

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

u

9 + 11



 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             
 6          dist[v] ← INFINITY                  
 7          prev[v] ← UNDEFINED                 
 8          add v to Q                      
10      dist[source] ← 0                        
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    
14                                              
15          remove u from Q 
16          
17          for each neighbor v of u:           // only v that are still in Q
18              alt ← dist[u] + length(u, v)
19              if alt < dist[v]:               
20                  dist[v] ← alt 
21                  prev[v] ← u 
22
23      return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Read backward from F and reverse.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

Graphs: traveling salesperson

Applications
Delivery routes.



Optimal 49,687-stop pub crawl

Applications

http://www.math.uwaterloo.ca/tsp/

You learned a lot this semester! 

(great job!)

Java Program design



Abstraction

inside outside

Composition

WordSeq

String[] sequence

int next

7

C
S
1
3
6

i
s

t
h
e

b
e
s
t

c
l
a
s
s

e
v
e
r

toStr
ing

sizeappend

remove

clear

Abstract machine

class Program {

  public static void foo() {
    String s1 = new String(“Hello class!”);
    String s2 = new String(“Hello class!”);
    System.out.println(s1 == s2);
    System.out.println(s1.equals(s2));
  }

  public static void main(String[] args) {
    foo();
  }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

“Hello class!”String

reference

Recursion

class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

fact
n = 0



Formal methods Induction

Program performance Big-O analysis

0



Algorithm design

# of copies for doubling expansion:

+ + + … +

add()

1
up to 

2nd 

elem.

2
up to 

4th 

elem.

4
up to 

8th 

elem.

(n/2)
up to 

nth 

elem.

Neat theorem: 1 + 2 + 4 + … + 2k-1 = 2k-1

Suppose n = 2k.

Doubling expansion costs ≈ O(n)

Then 1 + … + n/2 = 1 + … + 2k/2

= 1 + … + 2k-1 = 2k-1 = n-1

Sorting algorithms

Exotic sorting algorithms

d digits

k 
values

n 
elements

Search algorithms

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

322 = 365? no

322 < 365? yes



Abstract data types (ADTs) Ordered structures

8727

71

20

17

91

14

Partially-ordered structures

0 1 2 3

Ordinary letter Blue letter



Number representations Efficient encoding of structures

0 1 2 3 4 5 6 7

99 5 57 0 -7 56

left child right child

High-performance structures

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!
Dirk
20

6

Very general structures: graphs



Graph algorithms

1
2

10

6
4

8

3
5

7

9

Major declaration

(it’ll happen in June or July)

Final exam info

Final exam info
• Posted from May 20-May 25 on GLOW. 
• As before: choose a 3-hour window to take the exam. 
• Structure: 6-7 questions. 
• Open book. 
• Covers all material from the semester; more 
emphasis on material in second half. 

• Question form: What is the most appropriate data 
structure? 
• Justify in terms of ADT guarantees, Big-O, etc. 
• Note that this is an open book exam! 

• AFAIK, all of you are doing great so far. 
• If you’re worried about not passing, get in touch! 
We are happy to talk with you privately and offer 
support.



Life after CS136

CS256: Analysis of Algorithms

(10 runs of Karger’s randomized min-cut algorithm)

CS237: Computer Organization

Intel assembly 

mov dx,03030h       
mov ah,0Eh          
mov bl,100d         
xor cx,cx           
xor bh,bh           
writeloop:          
inc dl              
cmp dl,3Ah          
jnz writeloop1      
mov dl,30h          
inc dh              
writeloop1:         
inc bh              
cmp bh,03h          
jz writefizz        
cmp dl,30h          
jz writebuzz        
cmp dl,35h          
jz writebuzz        
mov al,dh           
int 10h             
mov al,dl           
int 10h             
writespace:
mov al,020h         
int 10h
dec bl              
jnz writeloop       

programend:         
cli                 
hlt                 
jmp programend      
writefizz:          
mov si,offset fizz  
call write          
xor bh,bh           
cmp dl,30h          
jz writebuzz        
cmp dl,35h          
jnz writespace      
writebuzz:          
mov si,offset buzz  
call write          
jmp writespace      
write:              
mov cl,04h          
write1:
mov al,[si]         
inc si              
int 10h             
loop write1         
ret                 
fizz:               
db "fizz"
buzz:               
db "buzz"

CS334: Principles of PL



CS361: Theory of Computation CS331: Intro. to Computer Security

CS338: Parallel Processing CS343: App. Dev. with Functional Prog.



CS376: Human-Computer Interaction CS315: Computational Biology

CS326: Software Methods CS333: Storage Systems



CS339: Distributed Systems CS358: Applied Algorithms

CS374: Machine Learning

Summer projects



Things that work for me™ 
be the hero in your own education

Build a computer

https://www.cpu-monkey.com/en/compare_cpu-intel_core_i7_2600k-6-vs-
intel_core_i5_8210y-954

Learn Linux Make your own website



We’ll post more ideas soon!

Things that work for me™ 
physical health = mental health

Recap & Next Class

Today we learned:

Next class:
No next class: good luck on the final!

Shortest paths 

Dijkstra’s algorithm 

Recap 

Exam info


