CSCI 136: Data Structures and Advanced Programming Lecture 32 Graph and course wrap-up

Williams

Announcements

One last week for quiz/activity/feedback

Submit all "soft" labs by May 19 (end of reading period)

Midterm resubmission: also due May 19

Final exam: May 20-25

Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these forms. Please take your time and write thoughtful responses.

Your feedback is very valuable to us!

Purpose of Blue Sheets

Student comments on the blue sheets [...] are solely for your benefit. They are not made available to department or program chairs, the Dean of the Faculty, or the CAP for evaluation purposes.

—Office of the Provost, Williams College

Purpose of SCS Forms

"[T]he SCS provides instructors with feedback regarding their courses and teaching. The faculty legislation governing the SCS provides that SCS results are made available to the appropriate department chair, the Dean of the Faculty, and at appropriate times, to members of the Committee on Appointments and Promotions (CAP). The results are considered in matters of faculty reappointment, tenure, and promotion."

-Office of the Provost, Williams College

<u>Blue sheet prompts:</u>

* What course topic did you enjoy the most?

* What course topic did you least enjoy? Do you think that it was valuable to learn anyway?

* Are there other aspects of the course that you liked or disliked? (E.g., *office hours*, *TAs*, *assignments*, *course structure*, *meeting times*, etc.) Feel free to suggest alternatives.

* Did you look forward to coming to class?

Outline

Graph applications:

shortest paths

traveling salesperson

Semester recap

Notes about final exam

Next steps

Shortest path problem

The **shortest path problem** is the problem of finding a **path between two vertices** in a graph such that **the sum** of the weights of its constituent edges **is minimized**.

Applications

Applications

Applications

Dijkstra's algorithm

- Invented by Edsgar Dijkstra in 1959.
- The original version used a min-priority queue.
- Designed using pencil and paper; algorithm was intended to demonstrate to non-technical people how computers could be useful.

Graphs: traveling salesperson

Program design

Formal methods

Induction

Program performance

Partially-ordered structures

CS361: Theory of Computation Arithmetic Hierarchy FO-VAL co-r.e. FOVON r.e. FOHN Halt Recursive Primitive Recursive EXPTIME comple EXPTIME SO(LFP) $SO[2^n]$ PSPACE complete PSPACE SO[n0(1 FO(PFP $FO[2^{n^O}]$ SO(TC) PTIME Hierarchy SO NP complet o-NP comple SAT co-NP NP SOF NP ∩ co-NP Horn- $FO[n^{O(1)}]$ Р SAT FO(LFP) SO(Hom) $FO[(\log n)^{O(1)}]$ "truly NC $FO[\log n]$ feasible" AC^1 FO(CFL) sAC¹ 2SAT NL comp. FO(TC) SO(Kr NL FO(DTC) 2COLOR L comp L FO(REGULAR) NC^1 FO(COUNT) ThC⁰ FO LOGTIME Hierarchy AC^0

CS331: Intro. to Computer Security

CS338: Parallel Processing

CS343: App. Dev. with Functional Prog.

CS358: Applied Algorithms

CS374: Machine Learning

Summer projects

Things that work for me™ be the hero in your own education

Build a computer

https://www.cpu-monkey.com/en/compare_cpu-intel_core_i7_2600k-6-vsintel_core_i5_8210y-954

Make your own website

We'll post more ideas soon!

Things that work for me[™] physical health = mental health

Recap & Next Class

Today we learned:

Shortest paths

Dijkstra's algorithm

Recap

Exam info

Next class:

No next class: good luck on the final!