CSCl 136:
Data Structures
and
Advanced Programming
Lecture 32
Graph and course wrap-up
Instructors: Dan \& Bill J
Williams

Announcements

One last week for quiz/activity/feedback Submit all "soft" labs by May 19 (end of reading period)

Midterm resubmission: also due May 19
Final exam: May 20-25

We care a lot about what you say in these forms.
Please take your time and write thoughtful responses.

Your feedback is very valuable to us!

Purpose of Blue Sheets

Student comments on the blue sheets [..] are solely for your benefit. They are not made available to department or program chairs, the Dean of the Faculty, or the CAP for evaluation purposes.
-Office of the Provost, Williams College

Purpose of SCS Forms

"[T]he SCS provides instructors with feedback regarding their courses and teaching. The faculty legislation governing the SCS provides that SCS results are made available to the appropriate department chair, the Dean of the Faculty, and at appropriate times, to members of the Committee on Appointments and Promotions (CAP). The results are considered in matters of faculty reappointment, tenure, and promotion."
-Office of the Provost, Williams College

Outline

Graph applications:
-shortest paths
-traveling salesperson

Semester recap

Notes about final exam
Next steps

Graphs: shortest paths

Applications

Shortest path problem

The shortest path problem is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Applications

Applications

4	3	7		6	8				SUDOKU		
			3			8		7	To Solve the porzle, al the blank		
	8				5		6				
	4				1				You can successfully solve the process of elimination.		
8											
8		3		5		6		9			
			6				3				
	1		5				9		$\frac{4}{2}$	$2{ }^{6} 8$	
7		5			6				8.2	$6{ }^{6} 5$	19
			9	8		1	5	6	94	521	1768
										${ }^{8} 879$	${ }^{9} 33^{4} 1$

Dijkstra's algorithm

- Invented by Edsgar Dijkstra in 1959.
- The original version used a min-priority queue.
- Designed using pencil and paper; algorithm was intended to demonstrate to non-technical people how computers could be useful.

Applications

Graphs: traveling salesperson

Abstract machine

public static void foo() \{
String sl = new String("Hello class!"), String s2 = new String("Hello class!"); System.out.println(s1 == s2); System.out.println(s1.equals(s2));
public static void main(String[] args) \{ foo();
\}

Recursion

Program performance

Big-O analysis

Algorithm design

\# of copies for doubling expansion:
add()

1	2	4	+	...	+(n/2)
up to	up to	up to			up to
2nd	4th	8th			nth
elem.	elem.	elem.			elem.

Neat theorem: $1+2+4+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1$
Suppose $\mathrm{n}=2 \mathrm{k}$.
Then $1+\ldots+n / 2=1+\ldots+2 k / 2$
$=1+\ldots+2^{k-1}=2^{k}-1=n-1$
Doubling expansion costs $=\mathbf{O}(n)$

Sorting algorithms

Exotic sorting algorithms

Search algorithms

$322=365 ?$ no
322 < 365 ? yes

Ordered structures

Partially-ordered structures

Number representations

Efficient encoding of structures

High-performance structures
key:

Very general structures: graphs

Graph algorithms

Major declaration

(it'll happen in June or July)

Final exam info

Final exam info

- Posted from May 20-May 25 on GLOW
- As before: choose a 3-hour window to take the exam.
- Structure: 6-7 questions.
- Open book.
- Covers all material from the semester; more emphasis on material in second half.
- Question form: What is the most appropriate data structure?
- Justify in terms of ADT guarantees, Big-O, etc.
- Note that this is an open book exam!
- AFAIK, all of you are doing great so far.
- If you're worried about not passing, get in touch! We are happy to talk with you privately and offer support.

Life after CS136

CS256: Analysis of Algorithms

(10 runs of Karger's randomized min-cut algorithm)

CS334: Principles of PL

$(\lambda x . \lambda y . x y)(\lambda x . x y)$	$\begin{array}{l}\text { given } \\ (\lambda . . \lambda y . a y)(\lambda x . x y) \\ \text { g reduc }\end{array}$

$(\lambda a . \lambda y . a y)(\lambda x . x y)$
$(\lambda a . \lambda b . a b)(\lambda x r y)$ $\begin{aligned} & \alpha \text { reduce } x \text { with } a \\ & \alpha \text { reduce }\end{aligned}$
$\begin{array}{cc}(\lambda a . \lambda b . a b)(\lambda x . x y) & \begin{array}{l}\alpha \text { reduce } y \text { with } b\end{array} \\ ([(\lambda x . x y)(a \mid \lambda b a b) \\ \beta \text { reduce } a \text { with }\end{array}$

| $(\lambda b-(\lambda x . x y b) b)$ |
| :---: | :--- |
| $(\lambda b .([b / x] x y))$ | \(\begin{aligned} \& sub

\& \beta reduce x with b\end{aligned}\)
$(\lambda b .([b / x] x y)) \quad \begin{aligned} & \beta \text { re } \\ & (\lambda b b y)\end{aligned}$
$\begin{aligned} &\lambda b .(b y)) \\ & \lambda b . b y \text { sub } \\ & \text { elminate parens }\end{aligned}$

CS361: Theory of Computation

CS331: Intro. to Computer Security

Software Security Risks at All Time High

CS343: App. Dev. with Functional Prog

CS326: Software Methods

$$
\frac{\{P\} S\{Q\} \quad, \quad\{Q\} T\{R\}}{\{P\} S ; T\{R\}}
$$

"god class"

Weakly coupled

CS315: Computational Biology

CS333: Storage Systems

CS358: Applied Algorithms

CS374: Machine Learning

Summer projects

Things that work for me ${ }^{\text {TM }}$ be the hero in your own education

Learn Linux

Build a computer

https://www.cpu-monkey.com/en/compare_cpu-intel_core_i7_2600k-6-vsintel core i5 8210y-954

Make your own website

We'll post more ideas soon!

Recap \& Next Class
Today we learned:
Shortest paths
Dijkstra's algorithm
Recap
Exam info

Next class:
No next class: good luck on the final!

