
CSCI 136:
Data Structures

and
Advanced Programming

Instructors: Dan & Bill

Lecture 24

Trees, part 4

Outline

Tries

Priority Queue

Deep Thoughts About Ordered
Structures

“rong” is not a word!

Yes it is!

No it’s not!

Yes!!!

…

Set

A set is an abstract data type that stores unique values in
no particular order.

Important operations are:

•add
•contains
•remove
•size

Sounds like any other Structure, right? Less is more.

Set does not need to store duplicate values.

Trie

A trie is an ordered tree structure used to store a set of
“strings” in a highly-space efficient manner. A lookup in a
trie is also highly efficient, O(m), where m is the length of
the string, in the worst case.

Tries are often used to represent set ADTs.

The word “trie” comes from “retrieval”.

Most people pronounce it “try” to avoid confusion.

Trie

Insight: A path to a node represents a string prefix. Every
string that shares a prefix with another string also shares
tree ancestors with that string.

bitrate

shared prefix: bit

bit

Adding to a trie

start

are
new
zen
no
not
as

are
new
zen
no
not
as

Adding to a trie

a

r

e

start

e

are
new
zen
no
not
as

Adding to a trie

a

r

e

start

e

n

e

ww

are
new
zen
no
not
as

Adding to a trie

a

r

e

start

e

n

e

w n

z

e

w n

are
new
zen
no
not
as

Adding to a trie

a

r

e

start

e

e

w n

z

e

w n

o

n

o

are
new
zen
no
not
as

Adding to a trie

a

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

are
new
zen
no
not
as

Adding to a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “are” in the set?

Yes!

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “art” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “art” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “art” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “art” in the set?

Querying a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Is the string “art” in the set?

No

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

s

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

s

a

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

a

Remove “as” from the trie.

Removing from a trie

r

e

start

e

e

w n

z

e

w n

o

n

t

o

t

a

Think about how to remove “zen” from the trie.

Lab 7 Lexicon interface

public class LexiconTrie implements Lexicon {
 public boolean addWord(String word) { … }
 public int addWordsFromFile(String filename) { … }
 public boolean removeWord(String word) { … }
 public int numWords() { … }
 public boolean containsWord(String word) { … }
 public boolean containsPrefix(String prefix) { … }
 public Iterator<String> iterator() { … }
 public Set<String> suggestCorrections(String target, int maxDistance) { … }
 public Set<String> matchRegex(String pattern) { … }
}

Priority

Priority Queue

A priority queue is an abstract data type that returns the
elements in priority order. Under priority ordering, an
element e with a higher priority (an integer) is returned
before all elements L having lower priority, even if that e
was enqueued after all L. When any two elements have
equal priority, they are returned in first-in, first-out order
(i.e., in the order in which they were enqueued).

Note

I will refer here to the maximum priority. But you could
also refer to minimum priority. All that matters is that you
order your data with respect to some extremum.

Blue letter Priority Queue

0 1 2 3

Ordinary letter Blue letter

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: extract

Priority Queue: Operations

insert: inserts an element with a given
priority value. Ensures that the next
element of the queue is in priority order.
Like enqueue.

0 1 2 3

Priority Queue: Operations

find-max: returns the next element with
a highest priority value. Like peek, does
not modify the queue.

0 1 2 3

Priority Queue: Operations

extract: removes and returns the next
element with a maximum priority value.
Like dequeue.

0 1 2 3

Priority Queue

How to implement?

Vector:
find-max: O(1)
insert: O(n)
extract: O(n)

Heap:
find-max: O(1)
insert: O(log n)
extract: O(log n)

BinarySearchTree:
find-max: O(n)
insert: O(n)
extract: O(n)

Priority Queue

Is it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert

extract

Recap & Next Class

This lecture:

Next lecture:

Heaps

Tries

Priority Queue ADT

