CSCl 136:
Data Structures
and
Advanced Programming

L ecture 24

Trees, part 4

Instructors: Dan & Bill

Williams

Outline

Tries
Priority Queue

Deep Thoughts About Ordered
Structures

e
F e
= &

e &

<

<
&
)
X &




Set

A set is an abstract data type that stores unique values in
no particular order.

Important operations are:
*add
econtains

eremove
esize

Sounds like any other Structure, right? Less is more.

Set does not need to store duplicate values.

structureS

Interface Set<E>

All Superinterfaces:
java.lang Iterable<E>, Structure<E>

All Known Implementing Classes:
AbstractSet, SetList, SetVector

public interface Set<E>
extends Structure<E>

Implementation of a set of elements. As with the mathematical object, the elements of the set are
not duplicated. No order is implied or enforced in this structure, but simple set operations such as
intersection, union, difference, and subset are provided.

Method Summary

void|addAll (Structure<E> other)
Union other set into this set.

boolean|containsAll (Structure<E> other)
Check to see if this set is contained in the other structure.

void|removeAll (Structure<E> other)

Computes the difference between this set and the other structure
void|retainAll (Structure<E> other)

Computes the intersection between this set and the other structure.

Methods inherited from interface structure5.Structure

Trie

A trie is an ordered tree structure used to store a set of
‘strings” in a highly-space efficient manner. A lookup in a
trie is also highly efficient, O(m), where m is the length of
the string, in the worst case.

Tries are often used to represent set ADTs.
The word “trie" comes from “retrieval”.

Most people pronounce it “try" to avoid confusion.

Trie

Insight: A path to a node represents a string prefix. Every
string that shares a prefix with another string also shares
tree ancestors with that string.

bit
bitrate

shared prefix: bit




are
new
zen

Adding to a trie

Adding to a trie

e p‘/@

new
zen ’

not O - |
Adding to a trie Adding to a trie
e, 99 0 9 Q

zen
no
not
as

G/’ QP

e SFe

not
as




Adding to a trie

are
new

Adding to a trie

o A e

o 9 Q Q

=, 9 0 0 @ b=
not e 0 ° not < e ° ° °
Adding to a trie Querying a trie

. g Ave

T e %%

as <

PR

G, e@p 0\0 0\0

Is the string "are” in the set?




Querying a trie

¥

o 8 e

010 90,9 Q\O 0\0

Is the string “are” in the set?

¢

Querying a trie

0 A e

0’ 96,9 0\0 e\ﬂ

Is the string “are” in the set?

f

Querying a trie

o A e

G/’ 96,9 Q\G Q‘O

Is the string “are” in the set?

¢

N
-]

Querying a trie

PR

,9°°P Q‘ea‘o

Is the string "are” in the set?

f




Querying a trie Querying a trie

A ~I

R R @ R 2 _Q
soo o o .. 808 0 o
© O o O O O o O
Is the string “are” in the set? Is the string “are” in the set?
+ ¢
Querying a trie Querying a trie
¥

PER PO

\eﬁzﬁ QQQQ eﬁzﬁ Q‘ea‘o

Is the string “are” in the set? Is the string "art” in the set?

¢

Yes!




Querying a trie

0 a e,

010 90,9 Q\O 0\0

Is the string “art” in the set?

¢

Querying a trie

0 A e

0’ 96,9 0\0 e\ﬂ

Is the string “art” in the set?

¢

Querying a trie

PER

Is the string "art” in the set?

f

\
P%ﬁ Qaq‘o o

Querying a trie

PR

,9°°P Q‘ea‘o

Is the string "art” in the set?

¢

No




Removing from a trie

o s e

010 90,9 Q\O 0\0

Remove “as” from the trie.

Removing from a trie

¥

o A e

0’ 96,9 0\0 e\ﬂ

Remove “as" from the trie.

Removing from a trie

9 A a

G/’ 96,9 Q\G Q‘O

Remove “as” from the trie.

Removing from a trie

9 A e

G, e@p 0\0 0\0

Remove “as” from the trie.




Removing from a trie Removing from a trie

o 8 e o 8 e

G/o Goﬁ Q\O Q‘O 6’ 96,9 0\0 0\0

Remove “as” from the trie. Remove “as" from the trie.

Removing from a trie Removing from a trie

e
o O o O o O o O

Remove “as” from the trie. Remove “as” from the trie.




Removing from a trie

PN

& oo

Think about how to remove “zen" from the trie.

Lab 7 Lexicon interface

LexiconTrie Lexicon {
boolean addWord(String word) { .. }
int addWordsFromFile (String filename) { .. }
boolean removeWord (String word) { .. }
int numWords () { .. }
boolean containsWord(String word) { .. }
boolean containsPrefix(String prefix) { .. }
Iterator<String> iterator() { .. }

Set<String> suggestCorrections(String target, int maxDistance) { ..

Set<String> matchRegex (String pattern) { .. }

}

Priority




MOMS SHOULD GET
A FAST PASS TO
THE FRONT OF THE

LINE AT COFFEE
SHOPS. HONEY, YOU'RE
22 & SLEPT 10
HOURS LAST NIGHT?
GET TO THE BACK
OF THE LINE

Priority Queue

A priority queue is an abstract data type that returns the
elements in priority order. Under priority ordering, an
element e with a higher priority (an integer) is returned
before all elements L having lower priority, even if that e
was enqueued after all L. When any two elements have
equal priority, they are returned in first-in, first-out order
(i.e., in the order in which they were enqueued).

Note

| will refer here to the maximum priority. But you could
also refer to minimum priority. All that matters is that you
order your data with respect to some extremum.




Blue letter

Priority Queue

0 1 2 3

Ordinary letter - Blue letter

Priority Queue Priority Queue
enqueue enqueue
0o 1 2 3 0 1 2 3
Ordinary letter - Blue letter




Priority Queue

engueue
o 1 2 3

g Ordinary letter - Blue letter

Priority Queue

extract

0 1 2 3

bl Gy .
e Ordinary letter - Blue letter

Priority Queue

extract

= g e o

0 1 2 3

(e
g Ordinary letter . Blue letter

Priority Queue

extract

0 1 2 3

e
T Ordinary letter - Blue letter




Priority Queue

blue letters: enqueue

0 1 2 3

Gy
g Ordinary letter - Blue letter

Priority Queue

blue letters: extract

0 1 2 3

bl Gy .
e Ordinary letter - Blue letter

Priority Queue: Operations

insert: inserts an element with a given
priority value. Ensures that the next

element of the queue is in priority order.

Like enqueue.

Priority Queue: Operations

find-max: returns the next element with
a highest priority value. Like peek, does
not modify the queue.

- Ve
¢ ¢
¢ 4




Priority Queue: Operations

extract. removes and returns the next
element with a maximum priority value.

Like dequeue.

- - g =

Priority Queue

How to implement?

Vector: BinarySearchlree:
find-max; OQ1) find-max; O(n)
insert: O(n) insert: O(n)
extract; O(n) extract: O(n)

Heap:

find-max: O(1)
insert: O(log n)
extract: O(log n)

Priority Queue

s it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert
extract

Recap & Next Class

This lecture:

Tries
Priority Queue ADT

Next lecture;

Heaps




