
CSCI 136:
Data Structures

and
Advanced Programming

Instructors: Dan & Bill

Lecture 23

Trees, part 3

Outline

Tree balance

Big-O

Implicit BST

Tree balance

In the worst case, how long does it take to find an
element in this binary search tree?

a

g

b

e w

s

h

Suppose it is the letter e .

In the worst case, how long does it take to find an
element in this binary search tree?

ea w

s

h

Suppose it is the letter a .

Finding a takes two steps.

g

b

Finding s takes one step.

In the worst case, how long does it take to find an
element in this binary search tree?

ea w

s

h

Suppose it is the letter s .

b

g

In the worst case, how long does it take to find an
element in this binary search tree?

ea wh

b

In the worst case, the time depends on the length of the
longest path.

g

s

e

c

Suppose a friend gives you the following sequence of
values: [a,b,c,d,e,f,g]

And asks you to store them in a binary tree to “make
accessing them fast.”

Is access guaranteed to be fast?

a

b

d

f

g

Ouch!!!

Worst case:
O(n)

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

isBalanced(t):

t is balanced if and only if
•t is empty, or
• all of the following

•isBalanced(t.left) is true and
•isBalanced(t.right) is true and
• | height(t.left) - height(t.right) | ≤ 1

Keep in mind: we know that the worst case has something
to do with height.

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Clearly a balanced tree.

Yeah, sure, there’s no tree. Details, details…

Time to access an element ~ 0 steps

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element ~ 0 steps

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b s

g

Changes nothing.

a

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 2 steps

b s

g

wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 2 steps

b s

g

e wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 2 steps

b s

g

he wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 2 steps

b s

g

This looks like time = log2(# nodes)

nodes max time

1 0 steps
2 1 step
3 1 step
4 2 steps
5 2 steps
6 2 steps
7 2 steps
8 3 steps
… …

But does this hold up?

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Clearly not a balanced tree.

e

c

a

b

d

f

g

nodes max time

7 6 steps

Logarithmic worst-case access time has something to do
with the compactness of a tree; height matters.

BST Big-O

Worst case time is O(log2(n)) for a balanced binary tree.

Why?

What is min. binary tree height needed to store n nodes?

Cute theorem: height ≥ ⌊log2(n)⌋

Intuition: log2(n) is the number of times you can divide n
nodes in halves.

1

2

3

Implicit Data Structures

Recall: binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or
removed. In other words, the key in each node:

• must be ≥ any key stored in the left subtree, and
• must be ≤ any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

BST is an ADT

Do we actually need a tree to store a tree?

No. We can use an implicit data structure instead.

Implicit data structure

A implicit data structure or space-efficient data
structure is a data structure that stores only necessary
information. Instead of explicitly representing
relationships between elements of the structure using
references, an implicit structure uses the relative
positions of elements.

Implicit binary tree

a

b c

d e f g

0 1 2 3 4 5 6 7

a b c d e f g

Implicit binary tree

a

b c

d e f g

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

Implicit relationship

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

Let’s implement an implicit BST.

Implicit Binary Search Tree Recap & Next Class

This lecture:

Next lecture:

Priority queues

Heaps

Tree balance

Big-O

Implicit BST

