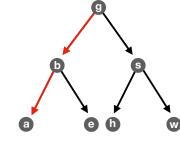
	Outline
CSCI 136: Data Structures and Advanced Programming Lecture 23 Trees, part 3	Tree balance Big-O Implicit BST
Instructors: Dan & Bill	
Williams	
Tree balance	In the worst case, how long does it take to find an element in this binary search tree?

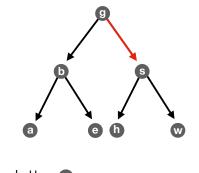
In the **worst case**, how long does it take to find an element in this binary search tree?



Suppose it is the letter @.

Finding (a) takes two steps.

In the **worst case**, how long does it take to find an element in this binary search tree?



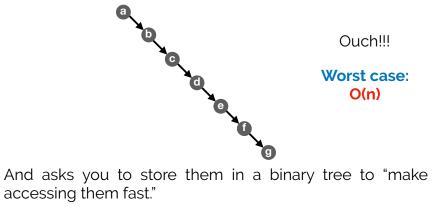
Suppose it is the letter **S**.

Finding S takes one step.

In the **worst case**, how long does it take to find an element in this binary search tree?

In the **worst case**, the time depends on the **length** of the **longest path**.

Suppose a friend gives you the following sequence of values: [a,b,c,d,e,f,g]



Is access guaranteed to be fast?

But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

isBalanced(t):

- ${\tt t}$ is balanced if and only if
- t is empty, or
- $\cdot \, {all} \, {\rm of} \, {\rm the} \, {\rm following} \,$
- •isBalanced(t.left) is true and
- •isBalanced(t.right) is true and
- \cdot |height(t.left) height(t.right) | ≤ 1

Keep in mind: we know that the worst case has something to do with **height**.

But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

Clearly a balanced tree. Yeah, sure, there's no tree. Details, details... Time to access an element ~ **0 steps**

But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

g

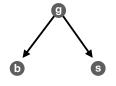
Balanced? Yes.

Max time to access an element ~ 0 steps

But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

0

Balanced? **Yes.** Max time to access an element: **1 step** But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

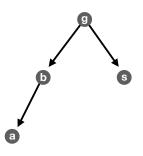


Balanced? Yes.

Changes nothing.

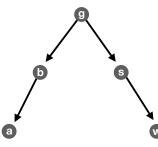
Max time to access an element: 1 step

But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

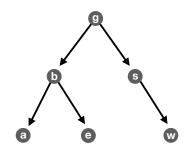


Balanced? **Yes.** Max time to access an element: **2 steps**

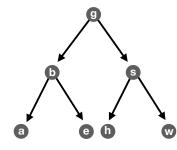
But what if your tree maintained the following property **on insertion**? (i.e., it is always true)



Balanced? **Yes.** Max time to access an element: **2 steps** But what if your tree maintained the following property **on insertion**? (i.e., it is always true)



Balanced? Yes. Max time to access an element: 2 steps But what if your tree maintained the following property **on insertion**? (i.e., it is always true)

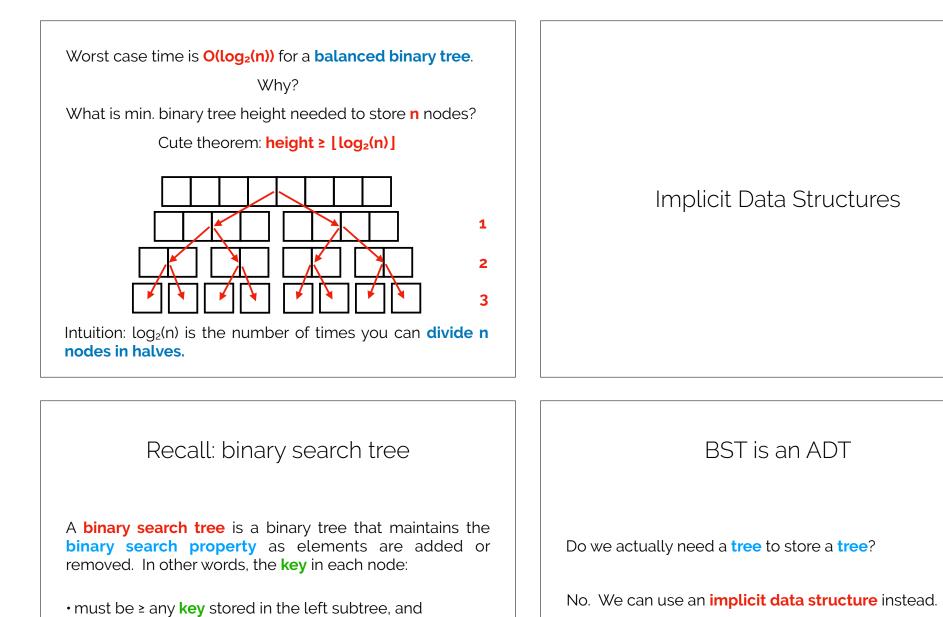


Balanced? Yes.

Max time to access an element: 2 steps

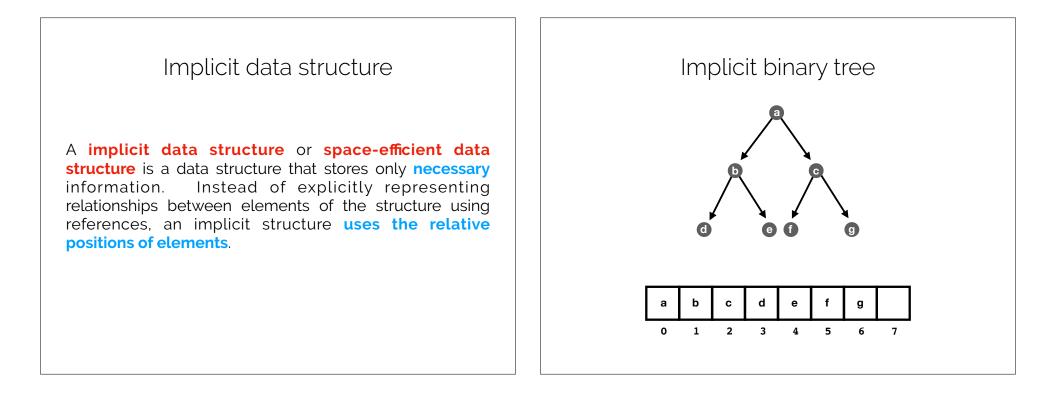
	# nodes	max time
	1	o steps
	2	1 step
	3	1 step
	4	2 steps
	5	2 steps
	6	2 steps
	7	2 steps
	8	3 steps
This looks like time = log2(# nodes)		
But does this hold	up?	

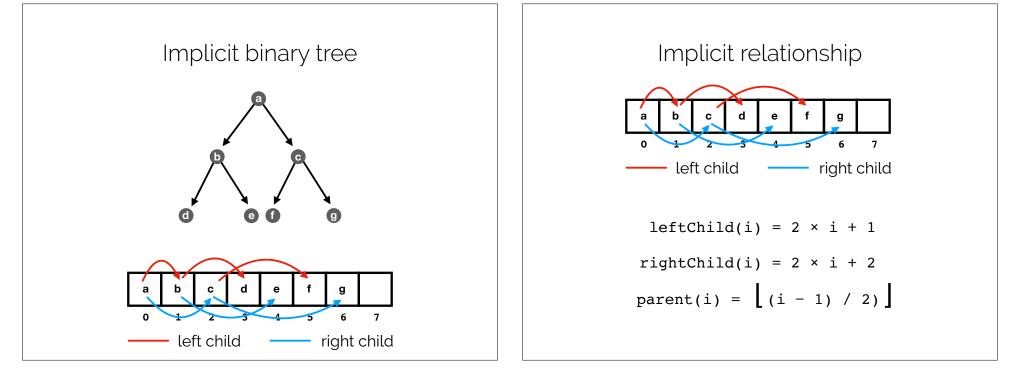
But what if your tree maintained the following property on
insertion? (i.e., it is always true)# nodesmax time
6 steps76 stepsClearly not a balanced tree.Logarithmic worst-case access time has something to do
with the compactness of a tree; height matters.



• must be ≤ any **key** stored in the right subtree.

As with other ordered structures, order is maintained on insertion.





Implicit Binary Search Tree

Let's implement an implicit BST.

Recap & Next Class

This lecture: Tree balance Big-O Implicit BST Next lecture: Priority queues Heaps