
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 15

Sorting, part III

• We will navigate the chaos together.
• Be proactive; we understand and we want to help
• The situation is unreasonable, we are not

• Remember, nothing about this is fair, but nothing
about this is anyone’s fault. We have to be good to
each other and to ourselves.
• There is more than CS136 in our lives.

2

Announcements

Study tip

Grades are important, but they are
not the most important thing in life.

Shoulda got
better grades

Life tip #10

Remember: labs are practice. Practice makes perfect.

Just do your best.

Remember: you can resubmit labs.

Remember: you can resubmit the midterm.

5

This course is going to change

See the “Course Changes” section of the course
webpage

Your crazy awesome TAs are actually available this
weekend! We will update the schedule soon…

Outline

1. Life after today

2. Sort stability

3. Merge sort

4. Quick sort

Sort stability

Suppose we are sorting on just the first letter.

Then ab ≮ aa and ab ≯ aa.

Note also the positions of these elements in A: 0 < 2.

ab cd aa bb

0 1 2 3

AUnsorted:

ab aa bb cd

0 1 2 3

ASorted:

This sort is stable, because the relative
order of ab and aa is the same.

Sort stability

A sort is stable if any two equal (or incomparable) objects
retain their relative order in a sorted order as in an
unsorted order.

Sort stability

More formally,

Let A be an array, and i and j indices in that array, s.t. i ≠ j.

If i < j, A[i] ≮ A[j], A[i] ≯ A[j], and πS(A,i) < πS(A,j) then sorting
algorithm S is stable.

Let πS(A,i) be a function that returns the updated index of i
after sorting A with sorting algorithm S.

Note: people often say A[i] = A[j] instead of A[i] ≮ A[j], A[i] ≯
A[j] even when A[i] and A[j] may be incomparable.

Merge sort

Merge sort

Invented by John von Neumann in 1948.

Merge sort

Merge sort is a sorting algorithm that uses the divide
and conquer technique. It works by recursively
partitioning data until no further partitioning is possible,
then by merging elements of the partitions back together
in sorted order.

Merge sort Merge sort

Merge sort takes O(n × log2n) time in the worst case
(usually written O(n log n)).

Merge sort takes O(n log n) time in the best case.

Merge sort takes O(n) auxiliary space because each step
makes a copy of the data being sorted.

I.e., merge sort is not an in-place sort. It is out-of-place.

Time complexity proof sketch

Merge takes O(n) because we have to copy n/2 elements
into an array of size n twice.

Divide takes O(1) because we are just picking a midpoint.

We divide O(log n) times and merge O(log n) times.

Therefore, the algorithm is O(n log n).

Time complexity
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

… … … … … … … …

c c c c c c c c{n

c is cost of
copy and
merge for
each element
(i.e., to sort an
array of size 1)

cn = O(n)

log2n = O(log n)

cn/2×2 = O(n)

cn = O(n)

c×n/4×4 = O(n)

O(log n)×O(n) = O(n log n)

num elements
in each array

num arrays

Space complexity

At first glance, this looks like O(n log n) space!

Why isn’t it?

Because after merging, we can discard old arrays
(i.e., garbage collect) and reuse that space.

n/2×2 = O(n)

n/4×4 = O(n)

n = O(n)

num elements
in each arraynum arrays

Quicksort

Quicksort

Invented by Tony Hoare in 1959.

One of my all-time favorite algorithms.

Quicksort

Quicksort is a sorting algorithm that uses the divide and
conquer technique. It works by partitioning the data into
two arrays around a pivot (a fixed element, like the first
element).

Performing this procedure recursively on the left and
right subarrays until there is nothing left to partition
guarantees a sorted array.

It swaps data so that one array contains elements
smaller than the pivot and the other array contains
elements larger than the pivot. This ensures that, at each
step, the pivot is in the correct position in the array.

Quicksort partition step Quicksort recursive steps

Quicksort

Base case (array of size 1): the pivot is trivially sorted.

Unlike merge sort, quick sort does not need to
combine sub arrays after splitting—the entire array is
guaranteed to be sorted upon reaching the base
case, and since the sort is done in-place no copying is
required.

Inductive case: Assume that the left and right subarrays
are sorted. Since the pivot is the middlemost element,
then everything to the left is smaller and everything to the
right is bigger. Therefore, the entire array is sorted.

Quicksort

Quicksort takes O(n2) time in the worst case. This case is
improbable, and highly improbable as n→∞.

Quicksort takes O(n log n) time in the best case.

I.e., quicksort is an in-place sort. Therefore it needs no
auxiliary space. As a result, quicksort is almost always
chosen over merge sort in any application where all the
data can fit into RAM.

Quicksort takes O(n log n) time in the average case.

Quicksort time proof sketch
In the worst case, we repeatedly choose the worst pivot
(either the min or max value in the array). This means that
we need to do n-1 swaps.

In the best case, we always happen to choose the
middlemost value as a pivot. I.e., the two subarrays are
the same size. The rest of the proof looks just like the
proof for merge sort where we intentionally choose two
subarrays of the same size.

Since there are n worst case choices of pivots, in the worst
case, we do n-1 swaps n times. O(n2).

If you’re thinking that quicksort’s best case is the same as
merge sort’s worst case, remember that quicksort is in-
place.

Sorting Wrapup

Time Space
Bubble Worst: O(n2)

Best: O(n) - if “optimized”
O(n) : n + c

Insertion Worst: O(n2)

Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

26

Looking Ahead

• So far we’ve focused on the List interface and
linear structures
• Vector and Linked Lists

• We will build more powerful structures using
these ideas as building blocks so that we can:
• search faster

• encode relationships between objects

• implement concepts present in our daily lives

Linear Structures with Restrictions

• Idea: take a “list”, and add some restrictions
• Stack: you can only add/remove elements from the top
• Queue: enqueue (add) elements at the back, dequeue

(remove) from elements from the front

Structures With Multiple Links

• Idea: take a “list”, allow more than one link per
node
• Binary tree:
• each node is a leaf or has two “children”

• Graph:
• arbitrary relationships between nodes

Random Access Hash Structures

• Idea: take an array, assign elements a “home”
based on their values
• Hash function:
• One-way function that takes a value and yields an index
• Ideally, evenly distribute values throughout the space
• Good hash functions have nice mathematical properties

that make lookup approximately O(1)!

Stay Safe and Healthy

• It’s not going to be easy, but we will work
together to make the course a success
• We want to support you! BUT

• It is up to you to let us know when things aren’t going
as planned

• We know what it is like to be stuck and not
understand something…
• Do not accept defeat alone. We are a team.

Stay Safe and Healthy
• If things come up in your life outside of class, let

us know
• We will find ways to accommodate your situation

• If things come up in class, let us know
• We will find ways to resolve issues on our end

Stay Safe and Healthy
• Find routines and practices that work for you
• Want a study partner from CS136?
• Reach out

• Hard time concentrating?
• “Work Uniform”, mynoise.net, daily planner

• Get the big picture, but not the details?
• Teach a friend!

• Easily distracted?
• draw pictures on paper, take physical notes, get away from

a computer

Questions?

Recap & Next Class

Today we learned:

Next class:

Midterm review

Merge sort

Quick sort

