
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 14

Sorting, part II

Announcements

• Midterm review session 
 Probably Monday evening  
 (stay tuned)

Outline

1. Bubblesort implementation

2. Generic sorts

3. Comparator interface

4. Insertion sort

5. Comparable interface

Sorting algorithms

Sorting algorithm

A sorting algorithm is a procedure for transforming an
unordered set of data into an ordered sequence.

A comparison sorting algorithm takes as input a set S
and a binary relation < that defines a strict weak ordering
on S.

Strict weak order

A strict weak order is a mathematical formalization of the
intuitive notion of a ranking of a set, some of whose
members may be tied with each other.

A strict weak order has the following properties:

• Irreflexivity: For all x in S, it is not the case that x < x.
• Asymmetry: For all x, y in S, where x ≠ y, if x < y then it is

not the case that y < x.
• Transitivity: For all x, y, z in S, where x ≠ y ≠ z ≠ x, if x < y

and y < z then x < z.
• Transitivity of Incomparability: For all x, y, z in S, where x
≠ y ≠ z ≠ x, if x is incomparable with y (neither x < y nor y
< x hold), and y is incomparable with z, then x is
incomparable with z.

Example order

Example: lexicographical order (aka, “dictionary order”):

Given two different sequences of the same length,
a1a2...ak and b1b2...bk, the first one is smaller than the
second one for the lexicographical order, if ai<bi, for the
first i where ai and bi differ.

To compare sequences of different lengths, the shorter
sequence is padded at the end with “blanks."

Lexicographic order is also totally ordered, which is a
stricter order than a weak order (i.e., nothing is
incomparable).

In-place sort

An in-place sort is a sort that takes an unordered set of
elements as an array and modifies (“mutates”) the original
array. Most in-place sorts return void.

In principle, in-place sorts can be faster than out-of-
place algorithms, since they do not need to copy data.

Tradeoff: make sure that you don’t need the original,
unsorted data!

Bubble sort Bubble sort

Bubble sort is a sorting algorithm in which the largest
element “bubbles up” during each pass. Bubble sort
makes n-1 passes through the data, performing pairwise
comparisons of elements using <.

Bubble sort maintains the invariant (an always-true
logical rule) that the rightmost n-numSorted elements
are sorted.

I.e., bubble sort builds a sorted order to the right.

Bubble sort complexity

Bubble sort is an O(n2) sorting algorithm in the worst
case. The naive algorithm is also O(n2) in the best case.
With a small modification, bubble sort is O(n) in the best
case (i.e., where the array is already sorted). (code)

Bubble sort algorithm

 public static void bubbleSort(int[] data) {
 int n = data.length;
 for (int numSorted = 0; numSorted < n; numSorted++) {
 for (int i = 1; i < n; i++) {
 if (data[i-1] > data[i]) {
 swap(data, i-1, i);
 }
 }
 }
 }

What if…

… you wanted to sort arbitrary objects?

What’s problematic with our bubble sort
implementation?

Comparators

Comparators

We frequently have to sort data that is more complex
than simple numbers.

For example, suppose we need to sort objects, like a
People[].

How do we define an order so that we can easily sort this?

compare to the rescue.

Comparator interface

The Comparator interface defines the method compare
that lets us compare two elements of the same type.

public int compare(T o1, T o2)

Returns an int < 0 when o1 is “less than” o2.

Returns an int > 0 when o2 is “less than” o1.

Returns an 0 otherwise.

Insertion sort

Insertion sort

Insertion sort is a sorting algorithm in which the next
element is “inserted” into a sorted array during each step.
Insertion sort makes n-1 passes through the sorted data,
performing pairwise comparisons of elements using <.

Insertion sort maintains the invariant that the leftmost n-
numSorted elements are sorted.

I.e., insertion sort builds a sorted order to the left.

Insertion sort algorithm

Insertion sort complexity

Insertion sort is an O(n2) sorting algorithm in the worst
case. Insertion sort is O(n) in the best case.

Selection sort

(read about this on your own!)

Comparable interface

We frequently have to sort data that is more complex
than simple numbers.

For example, suppose we need to sort objects, like a
People[].

How do we define an order so that we can easily sort this?

compareTo to the rescue.

Comparable interface

The Comparable interface defines the method
compareTo that lets us compare two elements of the
same type.

public int compareTo(T o)

Returns an int < 0 when this is “less than” o.

Returns an int > 0 when o is “less than” this.

Returns an 0 otherwise.

Recap & Next Class

Today we learned:

Next class:

Fast comparison sorts

More sorting algorithms

Comparators

