CSCI 136:
Data Structures and
Advanced Programming
Lecture 13
Sorting
Instructor: Dan Barowy
Williams

Outline

1. Practice Quiz
2. Induction activity
3. Sorting algorithms

Announcements

- If you are not feeling well, let Bill J or me know, and please stay home.
- Remember: wash your hands
frequently, cough into a sleeve, etc.
- Be cool.

Like recursion, there is an analogy

Activity

Prove: n cents can be obtained by using only 3 -cent and 8 -cent coins, for all $n \geq 15$.

Remember the template!

Step 1: Prove P(a)
Step 2: Prove $\mathbf{P}(\mathbf{k}) \Rightarrow \mathbf{P}(\mathbf{k}+1)$
Therefore, $P(n)$, for all $n \geq 1$, is true.

Proof sketch

$\mathrm{a}=15 ; \mathrm{P}(15)$: is 5×3 cents. True.
$P(k) \Rightarrow P(k+1)$ True.
Assume $\mathrm{P}(\mathrm{k})$ is true.
Case 1: $\mathrm{P}(\mathrm{k})$ has at least one 8-cent coin.
Then we can produce the value $k+1$ by replacing an 8 -cent coin with 3×3 cent coins.
Case 2: P(k) has no 8-cent coin.
Then we can produce the value $k+1$ by replacing 5×3 cents coins with 2×8 cent coins. This is OK because $k>15$.

Therefore we can find change for all $n \geq 15$. True.

| Code |
| :---: | :---: |
| Let's write a program that gives you the correct |
| change for all $\mathrm{n} \geq 15$. |

Sorting algorithms

Sorting algorithm

A sorting algorithm is a procedure for transforming an unordered set of data into an ordered sequence.

Bubble sort
$\begin{array}{llllllll}6 & 5 & 3 & 1 & 8 & 7 & 2 & 4\end{array}$

Bubble sort

Bubble sort is a sorting algorithm in which the largest element "bubbles up" during each pass. Bubble sort makes n-1 passes through the data, performing pairwise comparisons of elements using <.

Bubble sort maintains the invariant (an always-true logical rule) that the rightmost n-numSorted elements are sorted.
I.e., bubble sort builds a sorted order to the right.

Bubble sort algorithm

```
public static void bubbleSort(int data[], int n)
/ pre: 0 <= n <= data.length
// post: values in data[0..n-1] in ascending order
// post: values in data[0..n-1] in ascending ord
    int numSorted = 0; // number of values in order
    while (numSorted < n)
    {
        // bubble a large element to higher array index
        for (index = 1; index < n-numSorted; index++)
            if (data[index-1] > data[index]
                swap(data,index-1,index);
        }
        // at least one more value in place
        numSorted++
    }
}
```


Bubble sort complexity

Bubble sort is an $O\left(n^{2}\right)$ sorting algorithm in the worst case. The naive algorithm is also $O\left(n^{2}\right)$ in the best case. With a small modification, bubble sort is $\mathrm{O}(\mathrm{n})$ in the best case (i.e., where the array is already sorted).

Recap \& Next Class

Today we learned:

More induction
Bubble sort

Next class:
More sorting algorithms
Comparators

