
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 12

Mathematical Induction

Announcements

• Come to colloquium today— it’s
never too early to start getting credit!
(also, it’s fun)

•2:30pm in Wege Auditorium (TCL
123) every Friday

Outline

1. Mathematical induction

2. Example proofs

Mathematical Induction

A note about “formal methods”

If the problem “fits” the mold, there is
a procedure for determining truth.

Mathematical Induction

• The mathematical cousin of recursion is
induction

• Induction is a proof technique

• Purpose: to simultaneously prove an infinite
number of theorems!

Principle of Mathematical Induction

Let P(n) be a predicate that is defined for integers n, and
let a be a fixed integer.

If the following two statements are true:

1. P(a) is true.
2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

then the statement

for all integers n ≥ a, P(n) is true

is also true.

Principle of Mathematical Induction (variant)

Let P(n) be a predicate that is defined for integers n, and
let a be a fixed integer.

If the following two statements are true:

1. P(a) is true.
2. For all integers k > a, if P(k-1) is true then P(k) is true.

then the statement

for all integers n ≥ a, P(n) is true

is also true.

To be clear:

If you want to prove that P(n) is true for all integers n ≥ a,

1. You must first prove that P(a) is true.

2. Then you must prove that:

For all integers k ≥ a, if P(k) is true then P(k+1) is true.

Critically, when proving #2, assume that P(k) is
true and show that P(k+1) must also be true.

Names for things and “form”

Hypothesis: P(n) is true for all integers n ≥ a,

1. Base case: P(a) is true.

2. Inductive step:

For all integers k ≥ a, if P(k) is true then P(k+1) is true.

Like recursion, there is an analogy Like recursion, there is an analogy

P(a)

P(k)

P(k+1)

Example

Prove that the sum of the first n integers is:

n(n+1)

2

Example

Put another way, prove

n(n+1)
2

P(n) : 1 + 2 + 3 + … + n =

for all n ≥ 1.

We have an unbounded number of
hypotheses (“for all n ≥ 1”).

Use mathematical induction.

Remember the template!

Step 2: Prove P(k) ⇒ P(k+1)

Step 1: Prove P(a)

Therefore,
n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

For all n ≥ 1.

Is true.

Example

Step 1: Prove P(a)

n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

What would a good a be?

The “simplest” instance is a = 1. Let’s start there.

Example

Step 1: Prove P(a)

1(1+1)
2

P(a) : 1 =
1(1+1)

2

Is this statement true? Yes.

Proof:
1(1+1)

2
2
2

= = 1

Example

Step 2: Prove P(k) ⇒ P(k+1)

k(k+1)

2
P(k) : 1 + 2 + 3 + … + k =

Prove:

Assume the following is true:

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Let’s handle the left side first.

1 + 2 + 3 + … + (k + 1)

Looks familiar. Isn’t it the same as:

(1 + 2 + 3 + … + k) + (k + 1)

Example

Step 2: Prove P(k) ⇒ P(k+1)

(1 + 2 + 3 + … + k) + (k + 1)

According to P(k), which is true,
it must be equal to:

k(k+1)

2
(1 + 2 + 3 + … + k) + (k + 1) = + (k + 1)

Example

Step 2: Prove P(k) ⇒ P(k+1)

k(k+1)
2

= + (k + 1)

=
k(k+1) + 2(k+1)

2

k(k+1)
2

=
k(k+1)

2
2(k+1)

2
+

=
(k+1)(k+2)

2

Simplify

Let’s stop here.
The left side is

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Let’s handle the right side now.

Simplify

(k+1)((k+1)+1)
2

(k+1)(k+2)
2

Let’s stop here.

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

We just showed that the left side

equals the right side

(k+1)(k+2)
2

(k+1)(k+2)
2

Example

Step 2: Prove P(k) ⇒ P(k+1)

Step 1: Prove P(a)

Therefore,
n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

For all n ≥ 1.

Is true.

Expanding vectors: why double?

Why is the array doubling strategy
for Vector better than expanding the
array one element at a time?

One-at-a-time expansion

…

Initial array.

Insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

…

‘a’ ‘b’

‘a’ ‘b’ ‘c’

‘a’ ‘b’ ‘c’ ‘d’

‘a’

Insertion into an array

How much does array insertion cost?

‘a’ ‘b’ ‘c’

‘d’

It costs O(1).

In fact, lookup and insertion both cost O(1).

Tradeoff: arrays are fixed size.

Copying an array

How much does an array copy cost?

‘a’ ‘b’ ‘c’ ‘d’

It costs O(1) × m, where m is the size of the original array.

≈ O(m)

One-at-a-time expansion costs?

New array; copy previous; insert element.‘a’ ‘b’ ‘c’

O(m) + O(1) ≈ O(m), where m is the size of the original array.

Initial array.

Insert element.‘a’

(in the worst case, each time)

Cost is dominated by the size of the array being copied.

of copies for one-at-a-time expansion:

How many copies?

+ + + … +

add()

1
2nd

elem.

2
3rd

elem.

3
4th

elem.

(n-1)
nth

elem.

Recall theorem: 1 + 2 + 3 + … + k = k(k+1)/2

Sub n-1 for k: (n-1)((n-1)+1)/2 = n(n-1)/2

= n2/2-n/2

One-at-a-time expansion costs ≈ O(n2)

of copies for doubling expansion:

How many copies?

+ + + … +

add()

1
up to

2nd
elem.

2
up to

4th

elem.

4
up to

8th
elem.

(n/2)
up to
nth

elem.

Neat theorem: 1 + 2 + 4 + … + 2k-1 = 2k-1

Suppose n = 2k.

Doubling expansion costs ≈ O(n)

Then 1 + … + n/2 = 1 + … + 2k/2

= 1 + … + 2k-1 = 2k-1 = n-1 Doubling expansion costs ≈ O(n)

One-at-a-time expansion costs ≈ O(n2)

Which is faster?

Doubling is Vin Diesel-approved.

💩💩
😎😎

Activity

Prove: n cents can be obtained by using only
3-cent and 8-cent coins, for all n ≥ 15.

Recap & Next Class

Today we learned:

Next class:

Mathematical induction

Sorting

