CSCl 136:
Data Structures
and
Advanced Programming
Lecture 12
Mathematical Induction
Instructor: Dan Barowy
Williams

Announcements

- Come to colloquium today - it's never too early to start getting credit! (also, it's fun)
-2:30pm in Wege Auditorium (TCL 123) every Friday

Outline

1. Mathematical induction
2. Example proofs

Mathematical Induction

A note about "formal methods"

If the problem "fits" the mold, there is a procedure for determining truth.

Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Purpose: to simultaneously prove an infinite number of theorems!

Principle of Mathematical Induction

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.
then the statement
for all integers $\mathrm{n} \geq \mathrm{a}, \mathrm{P}(\mathrm{n})$ is true
is also true.

Principle of Mathematical Induction (variant)

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k>a$, if $P(k-1)$ is true then $P(k)$ is true.
then the statement
for all integers $\mathrm{n} \geq \mathrm{a}, \mathrm{P}(\mathrm{n})$ is true
is also true.

To be clear:

If you want to prove that $P(n)$ is true for all integers $\mathrm{n} \geq \mathrm{a}$,

1. You must first prove that $P(a)$ is true.
2. Then you must prove that:

For all integers $\mathrm{k} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true.

Critically, when proving \#2, assume that $\mathrm{P}(\mathrm{k})$ is true and show that $\mathrm{P}(\mathrm{k}+1)$ must also be true.

Like recursion, there is an analogy

Names for things and "form"

Hypothesis: $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq \mathrm{a}$,

1. Base case: $P(a)$ is true.
2. Inductive step:

For all integers $\mathrm{k} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true.

Like recursion, there is an analogy

Example

Prove that the sum of the first n integers is:

$$
\frac{n(n+1)}{2}
$$

Remember the template!

Step 1: Prove P(a)

Step 2: Prove $\mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Therefore,

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

For all $n \geq 1$.
Is true.

Example

Put another way, prove

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

for all $n \geq 1$.

We have an unbounded number of hypotheses ("for all $n \geq 1$ ").

Use mathematical induction.

Example

Step 1: Prove P(a)
What would a good a be?

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

The "simplest" instance is $\mathbf{a}=\mathbf{1}$. Let's start there.

Example

Step 1: Prove P(a)

$$
P(a): 1=\frac{1(1+1)}{2}
$$

Is this statement true? Yes.
Proof: $\frac{1(1+1)}{2}=\frac{2}{2}=1$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
Let's handle the left side first.

$$
1+2+3+\ldots+(k+1)
$$

Looks familiar. Isn't it the same as:

$$
(1+2+3+\ldots+k)+(k+1)
$$

Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

Assume the following is true:

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

Prove:

$$
P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}
$$

Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

$$
(1+2+3+\ldots+k)+(k+1)
$$

According to $P(k)$, which is true,
it must be equal to:

$$
(1+2+3+\ldots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)
$$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Simplify

$$
=\frac{k(k+1)}{2}+(k+1)
$$

$$
=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}
$$

$$
=\frac{k(k+1)+2(k+1)}{2}
$$

Let's stop here.
The left side is
$=\frac{(k+1)(k+2)}{2}$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
We just showed that the left side

$$
\frac{(k+1)(k+2)}{2}
$$

equals the right side

$$
\frac{(k+1)(k+2)}{2}
$$

Example

Step 2: Prove $\mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$

Let's handle the right side now.

$$
\frac{(k+1)((k+1)+1)}{2}
$$

Simplify

$$
\frac{(k+1)(k+2)}{2} \text { Let's stop here. }
$$

Example

Step 1: Prove P(a)
Step 2: Prove $\mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Therefore,

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

For all $n \geq 1$.
Is true.

Expanding vectors: why double?

Why is the array doubling strategy for Vector better than expanding the array one element at a time?

One-at-a-time expansion

.'.

Copying an array

How much does an array copy cost?

It costs $\mathbf{O (1)} \times \mathbf{m}$, where \mathbf{m} is the size of the original array.
$=O(m)$

One-at-a-time expansion costs?
(in the worst case, each time)

Initial array.

Insert element

New array; copy previous; insert element.
$O(m)+O(1)=O(m)$, where m is the size of the original array. Cost is dominated by the size of the array being copied.

How many copies?
\# of copies for doubling expansion:
add ()

Neat theorem: $1+2+4+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1$ Suppose $n=2 k$.

$$
\begin{gathered}
\text { Then } 1+\ldots+n / 2=1+\ldots+2^{\mathrm{k} / 2} \\
=1+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}-1}=\mathrm{n}-1 \\
\text { Doubling expansion costs }=\mathrm{O}(\mathrm{n})
\end{gathered}
$$

How many copies?
\# of copies for one-at-a-time expansion:

$$
\begin{array}{cccccc}
& \mathbf{1} & \mathbf{2} & \mathbf{+} & \mathbf{3} \quad \mathbf{+} & \mathbf{+}(\mathbf{n - 1}) \\
\text { 2nd } & \text { 3rd } & \text { 4th } & & \text { nth } \\
\text { add () }) & & \text { elem. }
\end{array}
$$

Recall theorem: $1+2+3+\ldots+k=k(k+1) / 2$
Sub $\mathrm{n}-1$ for $k:(\mathrm{n}-1)((\mathrm{n}-1)+1) / 2=\mathrm{n}(\mathrm{n}-1) / 2$

$$
=n^{2} / 2-n / 2
$$

One-at-a-time expansion costs $\approx \mathbf{O}\left(\mathbf{n}^{2}\right)$

Activity

Prove: n cents can be obtained by using only 3-cent and 8 -cent coins, for all $n \geq 15$

Recap \& Next Class

Today we learned:

Mathematical induction

Next class:

Sorting

