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Mathematical Induction

Announcements

• Come to colloquium today— it’s 
never too early to start getting credit! 
(also, it’s fun) 

•2:30pm in Wege Auditorium (TCL 
123) every Friday

Outline

1. Mathematical induction 

2. Example proofs

Mathematical Induction



A note about “formal methods”

If the problem “fits” the mold, there is 
a procedure for determining truth.

Mathematical Induction

• The mathematical cousin of recursion is 
induction 

• Induction is a proof technique  

• Purpose: to simultaneously prove an infinite 
number of theorems!

Principle of Mathematical Induction

Let P(n) be a predicate that is defined for integers n, and 
let a be a fixed integer. 

If the following two statements are true: 

1. P(a) is true. 
2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true. 

then the statement 

for all integers n ≥ a, P(n) is true 

is also true.

Principle of Mathematical Induction (variant)

Let P(n) be a predicate that is defined for integers n, and 
let a be a fixed integer. 

If the following two statements are true: 

1. P(a) is true. 
2. For all integers k > a, if P(k-1) is true then P(k) is true. 

then the statement 

for all integers n ≥ a, P(n) is true 

is also true.



To be clear:

If you want to prove that P(n) is true for all integers n ≥ a, 

1. You must first prove that P(a) is true. 

2. Then you must prove that: 

For all integers k ≥ a, if P(k) is true then P(k+1) is true.

Critically, when proving #2, assume that P(k) is 
true and show that P(k+1) must also be true.

Names for things and “form”

Hypothesis: P(n) is true for all integers n ≥ a, 

1. Base case: P(a) is true. 

2. Inductive step: 

For all integers k ≥ a, if P(k) is true then P(k+1) is true.

Like recursion, there is an analogy Like recursion, there is an analogy

P(a)

P(k)

P(k+1)



Example

Prove that the sum of the first n integers is:

n(n+1)

2

Example

Put another way, prove

n(n+1)
2

P(n) : 1 + 2 + 3 + … + n =

for all n ≥ 1.

We have an unbounded number of 
hypotheses (“for all n ≥ 1”).

Use mathematical induction.

Remember the template!

Step 2: Prove P(k) ⇒ P(k+1)

Step 1: Prove P(a)

Therefore,
n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

For all n ≥ 1.

Is true.

Example

Step 1: Prove P(a)

n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

What would a good a be?

The “simplest” instance is a = 1.  Let’s start there.



Example

Step 1: Prove P(a)

1(1+1)
2

P(a) : 1 =
1(1+1)

2

Is this statement true? Yes.

Proof:
1(1+1)

2
2
2

= = 1

Example

Step 2: Prove P(k) ⇒ P(k+1)

k(k+1)

2
P(k) : 1 + 2 + 3 + … + k =

Prove:

Assume the following is true:

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Let’s handle the left side first.

1 + 2 + 3 + … + (k + 1)

Looks familiar.  Isn’t it the same as:

(1 + 2 + 3 + … + k) + (k + 1)

Example

Step 2: Prove P(k) ⇒ P(k+1)

(1 + 2 + 3 + … + k) + (k + 1)

According to P(k), which is true, 
it must be equal to:

k(k+1)

2
(1 + 2 + 3 + … + k) + (k + 1) = + (k + 1)



Example

Step 2: Prove P(k) ⇒ P(k+1)

k(k+1)
2

= + (k + 1)

=
k(k+1) + 2(k+1)

2

k(k+1)
2

=
k(k+1)

2
2(k+1)

2
+

=
(k+1)(k+2)

2

Simplify

Let’s stop here. 
The left side is

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Let’s handle the right side now.

Simplify

(k+1)((k+1)+1)
2

(k+1)(k+2)
2

Let’s stop here.

Example

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2

P(k+1) : 1 + 2 + 3 + … + (k + 1) =

We just showed that the left side

equals the right side

(k+1)(k+2)
2

(k+1)(k+2)
2

Example

Step 2: Prove P(k) ⇒ P(k+1)

Step 1: Prove P(a)

Therefore,
n(n+1)

2
P(n) : 1 + 2 + 3 + … + n =

For all n ≥ 1.

Is true.



Expanding vectors: why double?

Why is the array doubling strategy 
for Vector better than expanding the 
array one element at a time?

One-at-a-time expansion

…

Initial array.

Insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

…

‘a’ ‘b’

‘a’ ‘b’ ‘c’

‘a’ ‘b’ ‘c’ ‘d’

‘a’

Insertion into an array

How much does array insertion cost?

‘a’ ‘b’ ‘c’

‘d’

It costs O(1).

In fact, lookup and insertion both cost O(1).

Tradeoff: arrays are fixed size.

Copying an array

How much does an array copy cost?

‘a’ ‘b’ ‘c’ ‘d’

It costs O(1) × m, where m is the size of the original array.

≈ O(m)



One-at-a-time expansion costs?

New array; copy previous; insert element.‘a’ ‘b’ ‘c’

O(m) + O(1) ≈ O(m), where m is the size of the original array.

Initial array.

Insert element.‘a’

(in the worst case, each time)

Cost is dominated by the size of the array being copied.

# of copies for one-at-a-time expansion:

How many copies?

+ + + … +

add()

1
2nd 

elem.

2
3rd 

elem.

3
4th 

elem.

(n-1)
nth 

elem.

Recall theorem: 1 + 2 + 3 + … + k = k(k+1)/2

Sub n-1 for k:  (n-1)((n-1)+1)/2 = n(n-1)/2

= n2/2-n/2

One-at-a-time expansion costs ≈ O(n2)

# of copies for doubling expansion:

How many copies?

+ + + … +

add()

1
up to 

2nd 
elem.

2
up to 

4th 

elem.

4
up to 

8th 
elem.

(n/2)
up to 
nth 

elem.

Neat theorem: 1 + 2 + 4 + … + 2k-1 = 2k-1

Suppose n = 2k.

Doubling expansion costs ≈ O(n)

Then 1 + … + n/2 = 1 + … + 2k/2

= 1 + … + 2k-1 = 2k-1 = n-1 Doubling expansion costs ≈ O(n)

One-at-a-time expansion costs ≈ O(n2)

Which is faster?

Doubling is Vin Diesel-approved.

💩💩
😎😎



Activity

Prove: n cents can be obtained by using only 
3-cent and 8-cent coins, for all n ≥ 15.

Recap & Next Class

Today we learned:

Next class:

Mathematical induction

Sorting


