
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 10

Abstract Data Types

Announcements

•Lab 3: how’s it going?

Outline

1. Practice Quiz

2. ADTs

3. Interfaces

Practice Quiz

The purpose of a class:

To “abstract away” problems.

Abstraction

Abstraction is the process of removing irrelevant
information so that a program is easier to understand.

Think of a class as having two sides.

Vector

Design so user never needs to “look inside”.

inside outside

Think of a class as having two sides.

The outside: A class should represent one idea, and the
class’s methods should support working with that one idea.

E.g., Vector: Represents an arbitrarily long sequence of
elements. Ideally, it also has the same asymptotic
properties as an array.

You can:

•add to it
•remove from it
•ask it for its size…
•convert it toString
•etc.

Think of a class as having two sides.

The inside: A class should contain whatever is necessary
to achieve that one idea and nothing else.

E.g., Vector: Represents an arbitrarily long sequence of
words.

Stores:

•E[] of elements.
•elementCount.

Ensures:

•String[] is always big enough (via ensureCapacity)

Think of a class as having two sides.

Vector

object[] elementData

int elementCount

5

C
S
1
3
6

i
s

t
h
e

b
e
s
t

c
l
a
s
s

toStr
ing

sizeadd

remove

clear

Design so user never needs to “look inside”.

Hiding data inside a class is called:
encapsulation

Vector

object[] elementData

int elementCount

5

C
S
1
3
6

i
s

t
h
e

b
e
s
t

c
l
a
s
s

toStr
ing

sizeadd

remove

clear

Classes can encapsulate other classes!

Vector<Association<…>>

Association[] elementData

This is how we design complex software.

toStr
ing

sizeappend

remove

clearint elementCount

2

(a,4) (b,1) (e,6)

An object stores data and has operations.

Remember LinkedList from last week?
LinkedList

toStr
ing

sizeadd

remove

clear

“Outside” is very similar to Vector!

Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of
data s t ructures (e .g . , implementat ion deta i ls ,
programming language). Instead, ADTs contain only
essential properties and are concisely defined by their
logical behavior over a set of values and a set of
operations.

In an ADT, precisely how data is represented on a
computer does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on
a computer matters a lot. Simple data structures are
often composed of simple representations, like primitives,
while more complex data structures are composed of
other data structures.

ADT example: List

A list is a linear collection of data elements, whose order
is not necessarily given by their placement in memory.
Elements may store any type of value. A list supports
inserting, searching for, and deleting any value in a list,
although not necessarily efficiently.

ADTs cannot be expressed in Java

At least not directly.

Instead, Java uses types to stand in for ADTs.

Because types in Java are often bound to an
implementation, Java provides two mechanisms for
programmers to use a type without depending on a
mechanism: interfaces and abstract classes.

Example

public class Vector<E>
 extends AbstractList<E>
 implements Cloneable

Generic: any type of element

Borrows code from AbstractList

Behaves the same as Cloneable

structure5 List implementations Interface

An interface defines boundary between two systems
across which they share information. An interface is a
contract: calling a method defined in an interface returns
the data as promised.

Because an interface contains no implementation,
programmers who use them cannot rely on accidental
implementation details.

E.g., the List interface states that there must be an add
method but does not say how it should be implemented.

Abstract class

An abstract class is a partial implementation, mainly used
as a labor-saving device.

E.g., many List implementations will implement methods
the same way. Why duplicate all that work?

isEmpty() can always be implemented by checking that
size() == 0.

Missing from Java: ADT behavior

Java prov ides no way of speci fy ing behavior
independently of implementation.

E.g., a List interface might require

public void prepend(T elem)

But there’s no way to require that the implementation
actually place the element at the beginning of the list.

Next best thing: assert statements

This is why we encourage you to write pre- and post-
conditions.

E.g.,

public void prepend(T elem) {
 T oldHead = head();
 …
 Assert.post(head().next() == oldHead)
}

Recap & Next Class

Today we learned:

Next class:

ADTs

Interfaces

The many varieties of List

Mathematical Induction

