CSCI 136:
Data Structures and
Advanced Programming
Lecture 9
Asymptotic analysis
Instructor: Dan Barowy
Williams

Announcements

-Lab 3: what's the deal with loops?
-Lab 1: feedback sent
-Lab 1: if feedback has mistakes...

Outline

1. Quiz
2. Study tip
3. Asymptotic analysis

Code Review

Study tip \#3: vocabulary

Every course is a "foreign language"
To learn effectively, study the vocab.
Maintain a "glossary."

```
BIC
tion; style billique, qui offre de l'analo- \(\mid\) amène les eaux jusquau moulin; \(b\) ief \({ }^{\text {'a }}\) a
```



``` soudc, qui contient carbibonate neutre pour
carbonique que 10 le meme poidside bas.
```



```
tient deux portions de carbone.
HCOAREE
\(\mathbf{E}\) adj. Alg. Qui est eleve
au carré du carré, a la quairieme puisine quis ser crmer le mouvement.
```


How do we know if an algorithm is faster than another?

Why can't we just measure "wall time"?

Why can't we just measure "wall time"?

- Other things are happening at the same time
- Total running time usually varies by input
- Different computers may produce different results!

Let's just count instructions, then

- What do we count?
- Count all computational steps?
- What is a "step"?
- What about steps inside loops?

Stepping back...

- How accurate do we need to be?
- If one algorithm takes 64 steps and another 128 steps, do we need to know the precise number?

What we do

Instead of precisely counting steps, we usually develop an approximation of a program's time or space complexity.

This approximation ignores tiny details and focuses on the big picture: how do time and space requirements grow as a function of the size of the input?

Example

```
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0
    for (int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;
}
```

- Can we count steps exactly? Do we even want to?
- if complicates counting
- Idea: overcount: assume if block always runs
- in the worst case, it does
- Overcounting gives upper bound on run time
- Can also undercount for lower bound

Focus is on order of magnitude

We can do this analysis for the best, average, and worst cases. We often focus on the worst case.

Overcounting Example

```
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
```



```
    for (int i = 1; i < arr.length; i++) N
        if (arr[maxPos] < arr[i])
```


Total cost: $\mathbf{c}_{1}+\mathbf{n c}_{\mathbf{2}}+\mathbf{n c}_{\mathbf{3}}+\mathbf{n c}_{4}+\mathbf{c}_{5}$
$=\mathbf{C}_{1}+\mathbf{n}\left(\mathbf{c}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right)+\mathrm{C}_{5}$
$=n\left(c_{2}+c_{3}+c_{4}\right)+c_{1}+c_{5}$
$=O(n)$
(as you shall see)

Big-O notation

Let f and g be real-valued functions that are defined on the same set of real numbers. Then f is of order \mathbf{g}, written $f(n)$ is $O(g(n))$, if and only if there exists a positive real number c and a real number n_{0} such that for all n in in the common domain of f and g.
$|f(n)| \leq c \times|g(n)|$, whenever $n>n_{0}$.

We read this as: " $\mathbf{f}(\mathbf{n})$ is $\mathbf{O}(\mathbf{g}(\mathbf{n}))^{\prime}$
as " \mathbf{f} of \mathbf{n} is big-oh of \mathbf{g} of \mathbf{n}."

Function growth

Consider the following functions, for $x \geq 1$

- $f(x)=1$
- $g(x)=\log _{2}(x) / /$ Reminder: if $x=2^{\wedge} n, \log _{2}(x)=n$
- $h(x)=x$
- $m(x)=x \log _{2}(x)$
- $n(x)=x^{2}$
- $p(x)=x^{3}$
- $r(x)=2^{x}$

Function growth \& Big-O

- Rule of thumb: ignore multiplicative constants
- Examples:
- Treat n and $n / 2$ as same order of magnitude
- $n^{2} / 1000,2 n^{2}$, and $1000 n^{2}$ are "pretty much" just n^{2}
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}$ is roughly n^{k}
- The key is to find the most significant or dominant term
- Ex: $\lim _{x \rightarrow \infty}\left(3 x^{4}-10 x^{3}-1\right) / x^{4}=3$ (Why?)
- So $3 x^{4}-10 x^{3}-1$ grows "like" x^{4}

Function growth

Recap \& Next Class
Today we learned:
Intro to asymptotic analysis

Next class:
Big-O notation
Induction

