
CSCI 136: 
Data Structures 

and 
Advanced Programming

Instructor: Dan Barowy

Lecture 9

Asymptotic analysis

Announcements

•Lab 3: what’s the deal with loops? 

•Lab 1: feedback sent 

•Lab 1: if feedback has mistakes…

Outline

1. Quiz 

2. Study tip 

3. Asymptotic analysis

Quiz



Code Review

Study tip #3: vocabulary

Every course is a “foreign language”

To learn effectively, study the vocab.

Maintain a “glossary.”

Asymptotic analysis

How do we know if an algorithm 
is faster than another?

Why can’t we just measure “wall time”?



Why can’t we just measure “wall time”?

• Other things are happening at the same time 
• Total running time usually varies by input 
• Different computers may produce different 

results!

Let’s just count instructions, then

• What do we count? 
• Count all computational steps? 
• What is a “step”? 
• What about steps inside loops?

Stepping back…

• How accurate do we need to be? 
• If one algorithm takes 64 steps and another 

128 steps, do we need to know the precise 
number?

What we do

Instead of precisely counting steps, we usually 
develop an approximation of a program’s 
time or space complexity.

This approximation ignores tiny details and 
focuses on the big picture: how do time and 
space requirements grow as a function of the 
size of the input?



Example

// pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for (int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly? Do we even want to? 

• if complicates counting 
• Idea: overcount: assume if block always runs 

• in the worst case, it does 
• Overcounting gives upper bound on run time 

• Can also undercount for lower bound

Overcounting Example

…………………………………………………………………………………………………………….. line 1 cost: c1

………………………………………… line 2 cost: nc2

…………………………………………………………………..……………….. line 4 cost: nc4

………………………………………………………………………………………………………………. line 5 cost: c5

Total cost: c1 + nc2 + nc3 + nc4 + c5

= c1 + n(c2 + c3 + c4) + c5

= n(c2 + c3 + c4) + c1 + c5

≈ O(n)

(as you shall see)

………………………………………….………………. line 3 cost: nc3

// pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for (int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) 
                 maxPos = i;

return maxPos;
}

We can do this analysis for the best, average, 
and worst cases.  We often focus on the worst 
case.

Focus is on order of magnitude Big-O notation

Let f and g be real-valued functions that are defined on 
the same set of real numbers.  Then f is of order g, written 
f(n) is O(g(n)), if and only if there exists a positive real 
number c and a real number n0 such that for all n in in the 
common domain of f and g,

|f(n)| ≤ c × |g(n)|, whenever n > n0.

We read this as: “f(n) is O(g(n))” 
as “f of n is big-oh of g of n.”



Consider the following functions, for x ≥ 1 
• f(x) = 1 

• g(x) = log2(x) // Reminder: if x=2^n, log2(x) = n 

• h(x) = x 

• m(x) = x log2(x) 

• n(x) = x2 

• p(x) = x3 

• r(x) = 2x

Function growth Function growth

• Rule of thumb: ignore multiplicative 
constants 

• Examples: 
• Treat n and n/2 as same order of magnitude 

• n2/1000, 2n2, and 1000n2 are “pretty much” just n2 

• a0nk + a1nk-1 + a2nk-2 + … ak 
  is roughly nk 

• The key is to find the most significant or 
dominant term  

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?) 
• So 3x4 -10x3 -1 grows “like” x4

Function growth & Big-O
Recap & Next Class

Today we learned:

Next class:

Intro to asymptotic analysis

Big-O notation 

Induction


