CSCI 136
Data Structures &
Advanced Programming

Lecture 30
Spring 2020

Instructors: Bil —— Dan

Last Time

e Hashing applications
* Cuckoo hashtables
e Bloom filters
e Data Verification

e Data Deduplication

* Hashing is a powerful tool that can be applied
in order to solve many problems.

Today’s Outline

* Introduction To Graphs
* Definitions and Properties: Undirected Graphs
e Small Proofs
* Rechability

* Graph Interface in Structure5

Graphs Describe the World!

Transportation Networks
Communication Networks
Social Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling

by
.
i The Bronx s (-
! R et
B [-~
o e dom
b N [
s 3 JR o iy, okAv Cppese A
[H. T | . . s
° - o wardlil
cmmnmi 15 .y
o s ot
e G
e .. it
: - A
I e e g o
.. i e | el
ny o L. foe e e
W——— s N o —
o) ey
o e
T L e N T
R) e
;s o
o 2
: 2 M vis
. -
yne saum]
-
3 mm:l
o
! B s s N s) by
s L -

New York Harbor

New York City Subway Diagram

ind connections Subway Services
— 7 Avenue Local
ahays sops,axcoptfor rush ours, paak crecion e 7 Avenue Express
days only 7 Avenuo Expross
weekdays, pesk diroction oy e
oty Lexington Avenue Express
oty Lexington Avenue Express
service none direction ony Lexington Avenue Local
— 42 Stroot-Flushing Local
anster E

outotatton vanster 8 Avenue Local

6 Avenuo Expross.
ogions i comection
wheoihai

v

Crosstown Local

Nassau Stroot Local
Nassau Stroot Expross.

14 Stroot-Canarsio Local

Broadway Expross
Broadway Expross
Broadway Local
Broadway Local

© 2302 G 00 @ 5000 @O © 000 OO

Shuttle

Staton Island Railway

Tome 300 Do

- sumacan? Pt
g (T—

— Tomx
wa
o o
AN
i
s

Jamaica Bay

Nodes = subway stops; Edges = subway lines

Seattle. ¢

.

Portland";

.'unl

S
0

Nodes = cities; Edges = rail lines connecting cities

SF

Portland Seattle Boston
. P
Denver Chicagc
f) 1
NY
LA © o :
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

SRI

STAN

UCLA

Internet (~1998)

Word Game

CORD

WOAD

@ WO *‘ 4~= RM
ot

WARD

Nodes = words; Edges = words that differ by exactly one letter

WOLD

10

Computer Science Course Prerequisites

136

At least one of
{334, 256}
o~

432 434T

s

Core course
Elective
Required

Recommended

Nodes = courses; Edges = prerequisites ***

Basic Definitions & Concepts

Portland Seattle Boston
[= i ?
e, = {SF, Denver}
SF Denver Chicago
= ®
Philadelphia
LA Dallas Atlanta \ NY
[_ ; ®

Definition: An undirected graph G = (V,E) consists of two sets

« V :the vertices of G, and E : the edges of G
 Each edge e in E is defined by a set of two vertices: its

incident

vertices.

« We write e = {u,v} and say that u and v are adjacent.

Basic Definitions & Concepts

Definition: An undirected graph G = (V,E)
consists of two sets:
e V :the vertices of G

* E :the edges of G

Each edge e in E is defined by a set of two vertices: its
incident vertices

We write e={u, v} and say that u and v are adjacent

The degree of a vertex is the number of incident edges
(loops counted twice)

Walking Along a Graph

* A walk from u tovin a graph G = (V,E) is an
alternating sequence of vertices and edges
U= Vg €, V|5 €, Vay cee sy Vi_|s € Vi =V
such that each e ={v., v, }fori=1, ..,k

* (Note a walk starts and ends on a vertex)

* If no edge appears more than once then
the walk is called a path

* If no vertex appears more than once then
the walk is a simple path

Walking In Circles

* A closed walk in a graph G = (V,E) is a walk
VO’ el, VI, e2’ V2, cee 9 Vk_l, ek’ Vk
such that vy = v, (it ends at the starting v)

* A circuit is a path where v, = v,

*Circuit vs. closed walk? Circuit has no repeat edges

* A cycle is a simple path where v, = v,
*Circuit vs. cycle? Cycle has no repeated vertices.

* The length of any of these is the number of
edges in the sequence

Little Tiny Theorems

e |f there is a walk from u to v, then there is a
walk from v to u.

e |f there is a walk from u to v, then there is a
path from u to v (and from v to u)

* If there is a path from u to v, then there is a
simple path from u to v (and v to u)

e Every circuit through v contains a cycle
through v

* Not every closed walk through v contains a
cycle through v! [Try to find an example!]

See Handout

* We give example graph of rail network from
earlier in slides
e Task: Define each term, then give examples from
the graph

* Also provided sample solutions to check
against for practice

Graphs in Structure>

* Implementation involves a number of design
decisions, depending on intended uses

* What kinds of graphs will be available!?

e Undirected, directed, mixed
* What underlying data structures will be used?
* What functionality will be provided!?
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)

Graphs in structure>

* Please refer to the graph interface handout as
you follow along with the rest of this
recording

* If you can, make annotations on the PDF or
print out a copy to take notes

20

Graphs in structure5

* We want to store information at vertices and
at edges, but we will favor vertices

* Let V and E represent the types of information
held by vertices and edges respectively

* Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex

* Type E holds a label for an (available) edge
* Label?: Application-specific data for a vertex/edge

21

Graphs in structure5

* So, the methods described in the Structure
interface are about vertices (but also impact
edges: e.g., clear())

* We'll want to add a number of similar
methods to provide information about edges,
and the graph itself

e Ultimately the Structure interface is a subset
of the total functionality in the graph classes

22

What is the Desired Functionality

* What are the basic operations we need in
order to describe algorithms on graphs!?

* Given vertices u and v: are they adjacent!
* Given vertex v and edge e, are they incident!?
* Given an edge e, get its incident vertices (ends)

* How many vertices are adjacent to v! (deg(Vv))

* The vertices adjacent to v are called its neighbors

* Get a list of the neighbors of v (or the edges
incident with v)

Graph Interface Methods

void add(V vlLabel), V remove(V vlLabel)

e Add/remove vertex to graph

void addEdge(V vlLabell, V vlLabel2, E edgelabel),
E removeEdge(V vlLabell, V vLabel2)
e Add/remove edge between vLabell and vLabel2
boolean containskEdge(V vLabell, V vLabel2)
e Returns true iff there is an edge between vLabell and vLabel2
Edge<V,E> getEdge(V vlLabell, V vlLabel2)
* Returns edge between vLabell and vLabel2
void clear()

e Remove all nodes (and edges) from graph

24

Graph Interface Methods

boolean visit(V vLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vLabel)
e Get iterator for all neighbors of vLabel
* For directed graphs, out-edges only
Iterator<V> iterator()
e Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

25

Representing Graphs

* Two standard approaches

e Option |: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)
* We'll look at both

e Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

e List-based graphs store the edge information in a (I-
dimensional) array of lists

e The array is indexed by the vertices

e Each array element is a list of edges incident with that vertex

26

Example Graph Representations:

Lists and Matrices

27

-

=o|[<][=]
S S I 1 N
Ol—|—|o|o|o|—|o|o bl sl | sl e el | B
A N I i
wiejel(e|-|ele|e|- Slol=ol==]=[=
olol-[-Jo[=|-[o]c] tt111111
el Il Ml Bl el Bl Ml Bl Bl AR s | o2 | e | ey s o e e
e o A B A
<ol OO0 |w|w|O|I <|ow|lo|lo|lwluw|lo]|=x

Graph Classes in structure5

Interface

Graph

GraphMatrix

Abstract Class

Structure

| >< |

AN

GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

GraphlList

GraphlListDirected

Vertex

RN

GraphMatrixVertex

GraphlListVertex

Edge

GraphListUndirected

Edge Class

e Graph edges are defined in their own public class

(vertices are hidden: referenced only by their label)

e Edge<V,E>(V vLabell, V vLabel?2,
E label, boolean directed)

e Construct a (possibly directed) edge between two labeled
vertices (vLabell - vLabel?2)

e vlLabell : here; vlLabel2 : there

* Useful Edge methods (getters and setters):

label(), here(), there()
setLabel(), isVisited(), isDirected()

29

Reachability and Connectedness

* Definition: A vertex v in G is reachable from
a vertex u in G if there is a path from u to v

e v is reachable from u iff u is reachable from v

* Definition: An undirected graph G is
connected if for every pair of vertices (u, v) in
G, v is reachable from u (and vice versa)

* The set of all vertices reachable from v, along

with all edges of G connecting any two of
them, is called the connected component of v

30

Reachability: Breadth-First Search

BFS(G, v) /I Do a breadth-first search of G starting at v
/] pre: all vertices are marked as unvisited
/I post: return number of visited vertices
count €0;
Create empty queue Q;
add v to Q, mark v as visited, add ‘v’ to count
While Q isn’'t empty

current €Q.dequeue();

for each unvisited neighbor u of current :

add u to Q, mark u as visited, add ‘u’ to count

return count:

How does this translate to code?

31

Breadth-First Search

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
todo.enqueue(next);
g.visit(next); count++;

}

return count;

32

Breadth-First Search of Edges

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(vertex, next))
g.visitEdge(vertex, next);
if (!g.isVisited(next)) {
todo.enqueue(next);
g.visit(next); count++;

}

return count;

33

Recursive Depth-First Search

/| Before first call to DFS, set all vertices to unvisited
/[Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1:
for each unvisited neighbor u of v:
count += DFS(G,u);
return count;

How does this translate to code?

34

Recursive Depth-First Search

int depthFirstSearch(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next))

count += depthFirstSearch(g, next);

}

return count;

35

Next Class

* This was a lot of definitions and jargon

* Next class we will look at 2 concrete designs:
an adjacency list and an adjacency matrix
* How would you implement them!?
* What is their performance!?

* |In what types of situations would you choose one
design over the other?

36

