
CSCI 136
Data Structures &

Advanced Programming

Lecture 30
Spring 2020

Instructors: Bill Dan

2

Last Time

• Hashing applications
• Cuckoo hashtables
• Bloom filters
• Data Verification
• Data Deduplication

• Hashing is a powerful tool that can be applied
in order to solve many problems.

3

Today’s Outline

• Introduction To Graphs
• Definitions and Properties: Undirected Graphs
• Small Proofs
• Rechability
• Graph Interface in Structure5

4

Graphs Describe the World1

• Transportation Networks
• Communication Networks
• Social Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
•

5

Nodes = subway stops; Edges = subway lines

6

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

7

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Connections in graph matter, not precise locations of nodes

8

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

9

Internet (~1998)

10

WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game

Nodes = words; Edges = words that differ by exactly one letter

11

Nodes = courses; Edges = prerequisites ***

12

Definition: An undirected graph G = (V,E) consists of two sets

Basic Definitions & Concepts

• V : the vertices of G, and E : the edges of G
• Each edge e in E is defined by a set of two vertices: its

incident vertices.
• We write e = {u,v} and say that u and v are adjacent.

e1 = {SF, Denver}

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

BostonPortland

Philadelphia

13

Basic Definitions & Concepts

• Definition: An undirected graph G = (V,E)
consists of two sets:
• V : the vertices of G
• E : the edges of G

• Each edge e in E is defined by a set of two vertices: its
incident vertices

• We write e={u,v} and say that u and v are adjacent

• The degree of a vertex is the number of incident edges
(loops counted twice)

14

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k
• (Note a walk starts and ends on a vertex)

• If no edge appears more than once then
the walk is called a path

• If no vertex appears more than once then
the walk is a simple path

15

Walking In Circles

• A closed walk in a graph G = (V,E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk (it ends at the starting v)

• A circuit is a path where v0 = vk
•Circuit vs. closed walk?

• A cycle is a simple path where v0 = vk
•Circuit vs. cycle?

• The length of any of these is the number of
edges in the sequence

Circuit has no repeat edges

Cycle has no repeated vertices.

16

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a
cycle through v! [Try to find an example!]

17

See Handout

• We give example graph of rail network from
earlier in slides
• Task: Define each term, then give examples from

the graph

• Also provided sample solutions to check
against for practice

19

Graphs in Structure5

• Implementation involves a number of design
decisions, depending on intended uses
• What kinds of graphs will be available?

• Undirected, directed, mixed

• What underlying data structures will be used?
• What functionality will be provided?
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

20

Graphs in structure5

• Please refer to the graph interface handout as
you follow along with the rest of this
recording

• If you can, make annotations on the PDF or
print out a copy to take notes

21

Graphs in structure5

• We want to store information at vertices and
at edges, but we will favor vertices
• Let V and E represent the types of information

held by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex
• Type E holds a label for an (available) edge
• Label?: Application-specific data for a vertex/edge

22

Graphs in structure5

• So, the methods described in the Structure
interface are about vertices (but also impact
edges: e.g., clear())

• We’ll want to add a number of similar
methods to provide information about edges,
and the graph itself
• Ultimately the Structure interface is a subset

of the total functionality in the graph classes

23

What is the Desired Functionality

• What are the basic operations we need in
order to describe algorithms on graphs?
• Given vertices u and v: are they adjacent?
• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (deg(v))

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

24

Graph Interface Methods
• void add(V vLabel), V remove(V vLabel)

• Add/remove vertex to graph

• void addEdge(V vLabel1, V vLabel2, E edgeLabel),

E removeEdge(V vLabel1, V vLabel2)

• Add/remove edge between vLabel1 and vLabel2

• boolean containsEdge(V vLabel1, V vLabel2)

• Returns true iff there is an edge between vLabel1 and vLabel2

• Edge<V,E> getEdge(V vLabel1, V vLabel2)

• Returns edge between vLabel1 and vLabel2

• void clear()

• Remove all nodes (and edges) from graph

25

Graph Interface Methods
• boolean visit(V vLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”
• boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)

• Returns true iff vertex/edge has been visited
• Iterator<V> neighbors(V vLabel)

• Get iterator for all neighbors of vLabel
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

26

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)
• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices
• Each array element is a list of edges incident with that vertex

27

Example Graph Representations:
Lists and Matrices

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

28

Graph Classes in structure5

29

Edge Class

• Graph edges are defined in their own public class
(vertices are hidden: referenced only by their label)
• Edge<V,E>(V vLabel1, V vLabel2,

E label, boolean directed)
• Construct a (possibly directed) edge between two labeled

vertices (vLabel1 à vLabel2)

• vLabel1 : here; vLabel2 : there

• Useful Edge methods (getters and setters):
label(), here(), there()
setLabel(), isVisited(), isDirected()

30

Reachability and Connectedness

• Definition: A vertex v in G is reachable from
a vertex u in G if there is a path from u to v
• v is reachable from u iff u is reachable from v

• Definition: An undirected graph G is
connected if for every pair of vertices (u, v) in
G, v is reachable from u (and vice versa)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

31

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count ß0;
Create empty queue Q;
add v to Q, mark v as visited, add ‘v’ to count
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q, mark u as visited, add ‘u’ to count
return count;

How does this translate to code?

32

Breadth-First Search
int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

todo.enqueue(next);
g.visit(next); count++;

}
}

}
return count;

}

33

Breadth-First Search of Edges
int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
Iterator<V> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(vertex, next))

g.visitEdge(vertex, next);
if (!g.isVisited(next)) {

todo.enqueue(next);
g.visit(next); count++;

}
}

}
return count;

}

34

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

How does this translate to code?

35

Recursive Depth-First Search
int depthFirstSearch(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += depthFirstSearch(g, next);
}

return count;
}

36

Next Class

• This was a lot of definitions and jargon
• Next class we will look at 2 concrete designs:

an adjacency list and an adjacency matrix
• How would you implement them?
• What is their performance?
• In what types of situations would you choose one

design over the other?

