CSCI 136 Data Structures \& Advanced Programming

Lecture 30
Spring 2020
Instructors: Bill
Dan

Last Time

- Hashing applications
- Cuckoo hashtables
- Bloom filters
- Data Verification
- Data Deduplication
- Hashing is a powerful tool that can be applied in order to solve many problems.

Today's Outline

- Introduction To Graphs
- Definitions and Properties: Undirected Graphs
- Small Proofs
- Rechability
- Graph Interface in Structure5

Graphs Describe the World ${ }^{1}$

- Transportation Networks
- Communication Networks
- Social Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling

Nodes = subway stops; Edges = subway lines

Nodes $=$ cities; Edges $=$ rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

Internet (~1998)

Word Game

Nodes $=$ words; Edges $=$ words that differ by exactly one letter

Computer Science Course Prerequisites

Nodes $=$ courses; Edges $=$ prerequisites $* * *$

Basic Definitions \& Concepts

Definition: An undirected graph $G=(\mathrm{V}, \mathrm{E})$ consists of two sets

- V : the vertices of G , and E : the edges of G
- Each edge e in E is defined by a set of two vertices: its incident vertices.
- We write $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ and say that u and v are adjacent.

Basic Definitions \& Concepts

- Definition: An undirected graph $G=(\mathrm{V}, \mathrm{E})$ consists of two sets:
- V : the vertices of G
- E : the edges of G
- Each edge e in E is defined by a set of two vertices: its incident vertices
- We write $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ and say that u and v are adjacent
- The degree of a vertex is the number of incident edges (loops counted twice)

Walking Along a Graph

- A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

such that each $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

- (Note a walk starts and ends on a vertex)
- If no edge appears more than once then the walk is called a path
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

- A closed walk in a graph $G=(\mathrm{V}, \mathrm{E})$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (it ends at the starting v)

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
-Circuit vs. closed walk? Circuit has no repeat edges
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ -Circuit vs. cycle? Cycle has no repeated vertices.
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u .
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through V
- Not every closed walk through v contains a cycle through v ! [Try to find an example!]

See Handout

- We give example graph of rail network from earlier in slides
- Task: Define each term, then give examples from the graph
- Also provided sample solutions to check against for practice

Graphs in Structure5

- Implementation involves a number of design decisions, depending on intended uses
- What kinds of graphs will be available?
- Undirected, directed, mixed
- What underlying data structures will be used?
- What functionality will be provided?
- What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- Please refer to the graph interface handout as you follow along with the rest of this recording
- If you can, make annotations on the PDF or print out a copy to take notes

Graphs in structure5

- We want to store information at vertices and at edges, but we will favor vertices
- Let V and E represent the types of information held by vertices and edges respectively
- Interface Graph<V,E> extends Structure<V>
- Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex
- Type E holds a label for an (available) edge
- Label?: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure interface are about vertices (but also impact edges: e.g., clear())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself
- Ultimately the Structure interface is a subset of the total functionality in the graph classes

What is the Desired Functionality

- What are the basic operations we need in order to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? $(\operatorname{deg}(v))$
- The vertices adjacent to v are called its neighbors
- Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vLabel), V remove(V vLabel)
- Add/remove vertex to graph
- void addEdge(V vLabell, V vLabel2, E edgeLabel),

E removeEdge(V vLabell, V vLabel2)

- Add/remove edge between vLabell and vLabel2
- boolean containsEdge(V vLabell, V vLabel2)
- Returns true iff there is an edge between vLabell and vLabel2
- Edge<V,E> getEdge(V vLabell, V vLabel2)
- Returns edge between vLabell and vLabel2
- void clear()
- Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vLabel)
- Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
- Mark edge as "visited"
- boolean isVisited(V vLabel), boolean isVisitedEdge(Edge<V,E> e)
- Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vLabel)
- Get iterator for all neighbors of vLabel
- For directed graphs, out-edges only
- Iterator<V> iterator()
- Get vertex iterator
- void reset()
- Remove visited flags for all nodes/edges

Representing Graphs

- Two standard approaches
- Option I: Array-based (directed and undirected)
- Option 2: List-based (directed and undirected)
- We'll look at both
- Array-based graphs store the edge information in a 2dimensional array indexed by the vertices
- List-based graphs store the edge information in a (Idimensional) array of lists
- The array is indexed by the vertices
- Each array element is a list of edges incident with that vertex

Example Graph Representations:

Lists and Matrices

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	I	0	I	I	0	0	I	I
C	I	I	0	I	0	I	0	0
D	0	I	I	0	I	I	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	I	0
G	I	I	0	0	0	I	0	0
H	I	I	0	0	I	0	0	0

Graph Classes in structure5

Interface
Abstract Class
Class

Edge

Edge Class

- Graph edges are defined in their own public class (vertices are hidden: referenced only by their label)
- Edge<V,E>(V vLabel1, V vLabel2,
E label, boolean directed)
- Construct a (possibly directed) edge between two labeled vertices (vLabel1 \rightarrow vLabel2)
- vLabell : here; vLabel2 : there
- Useful Edge methods (getters and setters):
label(), here(), there()
setLabel(), isVisited(), isDirected()

Reachability and Connectedness

- Definition: A vertex vin G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Definition: An undirected graph G is connected if for every pair of vertices (u, v) in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v , along with all edges of G connecting any two of them, is called the connected component of v

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count <0;
Create empty queue Q;
add v to Q, mark v as visited, add ' v ' to count
While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current: add u to Q, mark u as visited, add ' u ' to count
return count;
How does this translate to code?

Breadth-First Search

```
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
    while (!todo.isEmpty()) {
        V vertex = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(vertex);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                todo.enqueue(next);
                g.visit(next); count++;
            }
        }
    }
    return count;
}
```


Breadth-First Search of Edges

```
int BFS(Graph<V,E> g, V src) {
    int count = 0; Queue<V> todo = new QueueList<V>();
    todo.enqueue(src);
    g.visit(src); count++;
    while (!todo.isEmpty()) {
    V vertex = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(vertex);
    while (neighbors.hasNext()) {
        V next = neighbors.next();
        if (!g.isVisitedEdge(vertex, next))
            g.visitEdge(vertex, next);
        if (!g.isVisited(next)) {
        todo.enqueue(next);
        g.visit(next); count++;
        }
    }
}
return count;

\section*{Recursive Depth-First Search}
// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1;
for each unvisited neighbor \(u\) of \(v\) :
count += DFS(G,u);
return count;

\section*{Recursive Depth-First Search}
```

int depthFirstSearch(Graph<V,E> g, V src) {
g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next))
count += depthFirstSearch(g, next);
}
return count;
}

```

\section*{Next Class}
- This was a lot of definitions and jargon
- Next class we will look at 2 concrete designs: an adjacency list and an adjacency matrix
- How would you implement them?
- What is their performance?
- In what types of situations would you choose one design over the other?```

