CSCI 136
Data Structures &
Advanced Programming

Spring 2020
Lecture 28
Profs 2070567 and 68465

Last Time

* Hash tables implement the Map interface
* [obj.hashCode() % array.length] assigns objects to bins

* Collisions occur when multiple objects map to the
same bin
* We can resolve collisions using:

* Linear probing (aka open addressing)
* External chaining

Today’s Outline

Correct our “straw man” Linear Probing
External Chaining to resolve collisions
Managing load factor

A look at a real hash function

Linear Probing Review

* A hash function maps a key-value pair to a bin

* If two keys hash to the same bin, we have a
collision

* Linear probing scans and places the collided
element in the first available bin, creating a run

Linear Probing Challenge

* When we delete an element from a run, we
create a “‘hole”

e Challenge: How do we tell if the run has ended,
or if the hole is from a deletion?

e Solution: Insert a “placeholder”

* If we see the placeholder during a lookup, we treat it as
a collision

* If we see the placeholder during insertion, we treat it
as an open spot

— We must still scan the run to see if our key is present

Hashtable.java

public class Hashtable<K,V> implements Map<K,V>, Iterable<vV>

/* A single key-value pair to be used as a token
* indicating a reserved location in the hashtable.
* Reserved locations are available for insertion,
* but cause collisions on lookup. */

protected static final String RESERVED = "RESERVED";

/* The data associated with the hashtable. */
protected Vector<HashAssociation<K,V>> data;

Hashtable.java

protected int locate(K key) {
// initial hash code
int hash = Math.abs(key.hashCode() % data.size());
// keep track of first unused slot, in case we need it

int reservedSlot = -1;
boolean foundReserved = false;
while (data.get(hash) != null) {

// loop until end of run OR find target key
if (data.get(hash).reserved()) {
// remember reserved slot if we fail to locate value
if (!foundReserved) {
reservedSlot = hash;
foundReserved = true;

}
} else {

// value located? return the index in table

if (key.equals(data.get(hash).getKey())) return hash;
}
hash = (1l+hash)%data.size();

}

// return first empty slot we encountered
if (!foundReserved)
return hash;

else
return reservedSlot;

Hashtable.java

public V get(K key) {
// find bin where key lives (after resolving collisions)

int hash = locate(key);

// if the key is not found, the resulting location
// is either null or “RESERVED”
if (data.get(hash) == null ||
data.get(hash).reserved())
return null;

// key was found, so return associated value
return data.get(hash).getValue();

Hashtable.java

public V remove(K key) {
// find bin where key lives (after resolving collisions)

int hash = locate(key);

// if the key is not found, the resulting location

// is either null or “RESERVED”

if (data.get(hash) == null ||
data.get(hash).reserved())

return null;

// key was found, so remove, then return old value
count--;

V oldvValue = data.get(hash).getValue();
data.get(hash) .reserve();

return oldValue;

Observations

e Code becomes more complicated, but
manageable

* The length of a run dictates the performance
* Reserving elements does not “shrink” the
run—it defers the work to other operations

e Keeping our runs small is important, so we may
want to reexamine design decisions if we expect a
lot of deletions

External Chaining

e |nstead of runs, we store a list in each bin

datal 1(, 10, 10, 10, 00 10 10 1
R T T N S
(K,V) (KV) | | (KV) | | (KV) (K\V)
(K,V) (K,V) | | (KV) (K\V)
(K,V)

e Everything that hashes to bin. goes into list,

e get (), put(), and remove () only need to
check one slot’s list

* No placeholders!

Probing vs. Chaining

What is the performance of:
* put(K, V)
e LP: O(Il + run length)
* EC: O(l + chain length)
* get(K)
e LP: O(Il + run length)
* EC: O(l + chain length)
* remove (K)
e LP: O(Il + run length)
* EC: O(l + chain length)

e Run/Chain size is important. How do we control
cluster/chain length?

Load Factor

* Need to keep track of how full the table is
* Why!?
* What happens when array fills completely?
* Load factor is a measure of how full the hash
table is
e LF = (# elements) / (table size)
* When LF reaches some threshold, grow size
of array (typically threshold = 0.6)
e Challenges?

Growing the Underlying Array

e Cannot just copy values
* Why!?

e Key-value pairs’ bins may change

* Example: suppose (key.hashCode() == 11)
e 11 %7 =4
e 1% I13=11I;

e Result: must recompute all hash codes, then
reinsert key-value pairs into new array

* Also: try to keep array sizes relatively prime

e Redistribute “clumps”

Good Hashing Functions

e Important point: All of this hinges on using
“good” hash functions that spread keys
“evenly”

e Good hash functions:
* Are fast to compute

* Distribute keys uniformly

* Unfortunately, we often have to test
“goodness’” empirically

Example Hash Functions

* What are some feasible hash functions for
Strings?
e Use the first char’s ASCII value!?
e 0-255 only

* Not uniform (some letters more popular than others)

e Sum of all characters’ ASCII values!?
e Not uniform - lots of small words

* smile, limes, miles, slime are all the same

Example Hash Functions

e String hash functions commonly use weighted
SUMms
e Character values weighted by position in string

* Long words get bigger codes

* Distributes keys better than non-weighted sum

e Let’s look at different weights...

Hash of all words in UNIX
spelling dictionary (997

"S¥s.charAt(i)

buckets)

T L e TR T
© 070
© 00 % &%o%ﬁo@w 00 oo ane s

St © &% 0@@ 0% B o oS

o@oe&%ooooofoa o @B
o.&%h@ .
(3

o8 » oy o o D

o 3o® o 080

’£0&©£% i
® 000, OB 0O N

*8 oo o > Qe g i

o

° ‘mos g o

o apooRt, § 00 & PO P OOF

Po 00
OW%syv % 0000
TR R Rengye

o FETTT
%%
@@%

am’@o

90

Aduanbai g

500 600 700 800 900

Bucket

300 400

100 200

0

' s.charAt(i) * 2!

90 —
30 -
70 + -
60 -

0 100 200 300 400 500 600 700 800 900
Bucket

Z s.charAt(i) * 256!

This looks pretty good, but 256! is big...

0
(e
T
1

(o))
o
T
1

Frequency

0 100 200 300 400 500 600 700 800 900
Bucket

Java uses:

' s.charAt(i) * 31! :

E s.charAt(7) * 31"

i=0

Frequency

0 100 200 300 400 500 600 700 800 900
Bucket

Hashtables: O(l) operations!?

* How long does it take to compute a String’s
hashCode?

e O(s.length())

* Given an object’s hash code, how long does it
take to find that object?

* O(run length) or O(chain length) PLUS cost of
.equals() method
e Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(I)

Summary

put get space
unsorted vector O(n) O(n) O(n)
unsorted list O(n) O(n) O(n)
sorted vector O(n) O(log n) O(n)
balanced BST O(log n) | O(log n) O(n)
array indexed by key O(l) O(l) O(key range)

