CSCI 136 Data Structures & Advanced Programming

> Lecture 26 Spring 2020 Profs Bill & Dan

Last Time

- Heaps
 - Implementation details
 - Data stored in an implicit binary tree in a Vector
 - Code inspection (structure5.VectorHeap)
 - Big-O of key operations

Today

- Heaps (again!)
 - Finish Implementation details
 - Some analysis + proofs
- Heapsort

Implementing Heaps: Recap

- Strategy: perform tree modifications that always preserve tree *completeness*, but may violate heap property. Then fix.
 - Add/remove never add gaps to array
 - We always add in next available array slot (left-most available spot in binary tree)
 - We always remove using "final" leaf
 - When elements are added and removed, do small amount of work to "re-heapify"
 - pushDownRoot(): recursively swaps large element down the tree
 - percolateUp(): recursively swaps small element up the tree

VectorHeap Summary

- Get is O(1), add/remove are both O(log n)
- Data is not completely sorted
 - A "partial" ordering is maintained for all root-toleaf paths
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How?

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" V

- Method I: Top-Down
 - Assume V[0...k] satisfies the heap property
 - Call percolateUp on item in location k+1
 - Now, V[0..k+1] satisfies the heap property

Grow valid heap region one element at a time

Practice Top-Down

Input:

- int a[6] = $\{7,5,9,1,2,5,4\}$ 0 1 2 3 4 5 6
 - for (int i = 0; i < a.length; i++)
 percolateUp(a, i);</pre>

Result: a is a valid heap!

• a = $\begin{bmatrix} 1 & | & 2 & | & 4 & | & 7 & | & 5 & | & 9 & | & 5 \end{bmatrix}$ 0 1 2 3 4 5 6

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to "heapify" V

- Method II: Bottom-up
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-I
 - Then V[k-1..n] satisfies heap property

Practice Bottom-Up

Input:

- int a[6] = $\{7,5,9,1,2,5,4\}$ 0 1 2 3 4 5 6
 - for (int i = a.length-1; i > 0; i--)
 pushDownRoot(a, i);

Result: a is a valid heap!

• a = $\begin{bmatrix} 1 & | & 2 & | & 4 & | & 5 & | & 7 & | & 5 & | & 9 \end{bmatrix}$ 0 1 2 3 4 5 6

Let's Compare

- Which is faster: Top down or Bottom Up?
 - Q: Think about a complete binary tree. Where do most of the nodes live?
 - A: The leaves!
 - Given that most of the nodes are leaves, should we percolateUp or pushDown?
 - To answer this, we should think about "how far" we need to move a node in the worst case.

Some Sums (for your toolbox)

$$\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1$$

$$\sum_{d=0}^{d=k} r^d = (r^{k+1} - 1) / (r - 1)$$

$$\implies \sum_{d=1}^{d=k} d * 2^d = (k-1) * 2^{k+1} + 2$$

$$\implies \sum_{d=1}^{d=k} (k-d) * 2^d = 2^{k+1} - k - 2$$

All of these can be proven by (weak) induction.

Try these proofs to hone your skills!

The second sum is called a geometric series. It works for any r≠0

Top-Down vs Bottom-Up

- **Top-down heapify (percolate up)**: elements at depth d may be swapped d times.
- The total # of swaps is:

(recall: h = log n) $\sum_{d=1}^{h} d2^{d} = (h-1)2^{h+1} = (\log n - 1)2n + 2$

- This is $O(n \log_2 n)$
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: O(log₂n) swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify (push down): elements at depth d may be swapped h-d times.
- The total # of swaps is:

$$\sum_{d=1}^{h} (h-d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2$$

- This is O(n) it beats top-down!
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times
 SO COOL !!!

HeapSort

- Kind of an "Advanced" version of Selection Sort
- Strategy:
 - I. Make a *max-heap*: array[0...n]
 - array[0] is largest value
 - array[n] is rightmost leaf
 - 2. Take the largest value (array[0]) and swap it with the rightmost leaf (array[n])
 - 3. Call pushDownRoot on array[0...n-1]
 - Now our "heap" is one element smaller, and the largest element is at end of array.

Repeat until heap is empty and array is sorted

HeapSort

- Another O(n log n) sort method
- Heapsort is not stable
 - The relative ordering of elements is not preserved in the final sort
 - Why not?
 - There are multiple valid heaps given the same data
- Heapsort can be done *in-place*
 - No extra memory required!!!
 - Great for resource-constrained environments

Heap Sort vs QuickSort

Why Heapsort?

- Heapsort is slower than Quicksort in general
- Any benefits to heapsort?
 - *Guaranteed* O(n log n) runtime
- Works well on mostly sorted data, unlike quicksort
- Good for incremental sorting

More on Heaps

- Set-up: We want to build a *large* heap. We have several processors available.
- We'd like to use them to build smaller heaps and then merge them together
- Suppose we can share the array holding the elements among the processors.
 - How long to merge two heaps?
 - How complicated is it?
- What if we use BinaryTrees for our heaps?

Mergeable Heaps

- We now want to support the additional destructive operation merge(heap1, heap2)
- Basic idea: the heap with larger root somehow points into heap with smaller root
- Challenges
 - Points how? Where?
 - How much reheapifying is needed
 - How deep do trees get after many merges?

Skew Heap

- Heaps are not *necessarily* complete BTs
 - We made this requirement to guarantee performance in our VectorHeap representation
 - Rather than use Vector as underlying data structure, we can use a binary tree!
- Details are in the book, but at a high level...
 - The merge algorithm keeps the tree shallow over time
 - Theorem: Any set of m SkewHeap operations can be performed in O(m log n) time, where n is the total number of items in the SkewHeaps

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T) if either S or T is empty, return the other Case 1 if T.minValue < S.minValue swap S and T (S now has minValue) if S has no left subtree, T becomes its left subtree case 2 else

> let temp point to right subtree of S left subtree of S becomes right subtree of S merge(temp, T) becomes left subtree of S Case 3 return S

Skew Heap: Merge Examples

Bailey page 331

Tree Summary

- Trees
 - Express hierarchical relationships
 - Level ordering captures the relationship
 - i.e., ancestry, game boards, decisions, etc.
- Heap
 - Partially ordered tree based on item priority
 - Node invariants: parent has higher priority than each child
 - Provides efficient PriorityQueue implementation