
CSCI 136
Data Structures &

Advanced Programming

Lecture 26
Spring 2020

Profs Bill & Dan

Last Time

• Heaps
• Implementation details

• Data stored in an implicit binary tree in a Vector

• Code inspection (structure5.VectorHeap)
• Big-O of key operations

2

Today

• Heaps (again!)
• Finish Implementation details
• Some analysis + proofs

• Heapsort

3

Implementing Heaps: Recap

• Strategy: perform tree modifications that always
preserve tree completeness, but may violate heap
property. Then fix.
• Add/remove never add gaps to array

• We always add in next available array slot (left-most available spot in
binary tree)

• We always remove using “final” leaf

• When elements are added and removed, do small amount of
work to “re-heapify”
• pushDownRoot(): recursively swaps large element down the tree
• percolateUp(): recursively swaps small element up the tree

VectorHeap Summary

• Get is O(1), add/remove are both O(log n)
• Data is not completely sorted
• A “partial” ordering is maintained for all root-to-

leaf paths

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap

• How?

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V
• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Call percolateUp on item in location k+1
• Now, V[0..k+1] satisfies the heap property

Grow valid heap region one element at a time

Practice Top-Down

Input:
• int a[6] = {7,5,9,1,2,5,4}

0 1 2 3 4 5 6
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

Result: a is a valid heap!
• a = [1|2|4|7|5|9|5]

0 1 2 3 4 5 6

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V
• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property

• Now call pushDown on item in location k-1
• Then V[k-1..n] satisfies heap property

Grow valid heap region one element at a time

Practice Bottom-Up

Input:
• int a[6] = {7,5,9,1,2,5,4}

0 1 2 3 4 5 6
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

Result: a is a valid heap!
• a = [1|2|4|5|7|5|9]

0 1 2 3 4 5 6

Let’s Compare

• Which is faster: Top down or Bottom Up?
• Q: Think about a complete binary tree. Where do

most of the nodes live?
• A: The leaves!

• Given that most of the nodes are leaves, should
we percolateUp or pushDown?
• To answer this, we should think about “how far” we

need to move a node in the worst case.

Some Sums (for your toolbox)

2dd=0
d=k

∑ = 2k+1 −1

d *2dd=1
d=k

∑ = (k −1)*2k+1 + 2

rdd=0
d=k

∑ = (rk+1 −1) / (r −1)

(k − d)*2dd=1
d=k

∑ = 2k+1 − k − 2

All of these can be
proven by (weak)
induction.

Try these proofs to
hone your skills!

The second sum is
called a geometric
series. It works for
any r≠0

Top-Down vs Bottom-Up

• Top-down heapify (percolate up): elements at
depth d may be swapped d times.

• The total # of swaps is:

!
"#$

%
&2" = ℎ − 1 2%,$ = log 0 − 1 20 + 2

• This is O(n log2n)
• Some intuition: most of the elements are in the lowest levels

of the tree, so each of them might have to move to root:
O(log2n) swaps per element

(recall: h = log n)

Top-Down vs Bottom-Up

• Bottom-up heapify (push down): elements at depth
d may be swapped h-d times.

• The total # of swaps is:

!
"#$

%
(ℎ −))2" = 2%-$ − ℎ − 2 = 2. − log . + 2

• This is O(n) — it beats top-down!
• Some intuition: most of the elements are in the lowest levels

of the tree, so each of them will only be pushed down
(swapped) a small number of times SO COOL!!!

HeapSort
• Kind of an “Advanced” version of Selection Sort
• Strategy:

1. Make a max-heap: array[0…n]
• array[0] is largest value
• array[n] is rightmost leaf

2. Take the largest value (array[0]) and swap it with
the rightmost leaf (array[n])

3. Call pushDownRoot on array[0…n-1]
• Now our “heap“ is one element smaller, and the largest

element is at end of array.

Repeat until heap is empty and array is sorted

HeapSort

• Another O(n log n) sort method
• Heapsort is not stable
• The relative ordering of elements is not preserved

in the final sort
• Why not?

– There are multiple valid heaps given the same data

• Heapsort can be done in-place
• No extra memory required!!!
• Great for resource-constrained environments

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Works well on mostly sorted data, unlike
quicksort

• Good for incremental sorting

More on Heaps

• Set-up: We want to build a large heap. We
have several processors available.

• We’d like to use them to build smaller heaps
and then merge them together

• Suppose we can share the array holding the
elements among the processors.
• How long to merge two heaps?

• How complicated is it?

• What if we use BinaryTrees for our heaps?

Mergeable Heaps

• We now want to support the additional
destructive operation merge(heap1, heap2)

• Basic idea: the heap with larger root somehow
points into heap with smaller root

• Challenges
• Points how? Where?
• How much reheapifying is needed
• How deep do trees get after many merges?

Skew Heap

• Heaps are not necessarily complete BTs
• We made this requirement to guarantee

performance in our VectorHeap representation
• Rather than use Vector as underlying data

structure, we can use a binary tree!

• Details are in the book, but at a high level…
• The merge algorithm keeps the tree shallow over

time
• Theorem: Any set of m SkewHeap operations can

be performed in O(m log n) time, where n is
the total number of items in the SkewHeaps

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T (S now has minValue)
if S has no left subtree, T becomes its left subtree
else

let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S

return S

Case 1

Case 2

Case 3
(recurse)

Skew Heap: Merge Examples

13.4 A Heap Implementation 331

Left

1 3

3

(a)

(b)

(c)

3

1

1 1

1

10

3

10

(d)

+

+

+

+

+

1

1

3

3
1

Left Right Result

Left Right Result

Left Right Result

ResultRight

Figure 13.6 Different cases of the method for s. In (a) one of the
heaps is empty. In (b) and (c) the right heap becomes the left child of the left heap. In
(d) the right heap is merged into what was the right subheap.

Bailey
page 331

Tree Summary

• Trees
• Express hierarchical relationships
• Level ordering captures the relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority
• Node invariants: parent has higher priority than

each child
• Provides efficient PriorityQueue implementation

