
CSCI 136
Data Structures &

Advanced Programming

Lecture 25
Spring 2020

Profs Bill & Dan

Last Time

• Tries! (Such a cool data structure…)
• Application: Lexicon (i.e., Lab 7)

• Priority Queues
• Elements must be comparable (why?)
• Ordered Vector implementation

• Implements the interface, but performance is slow

2

Today

• Heaps
• Implementation

• Describe invariants
• Describe general strategy
• Walk through some examples (whiteboard)
• Study the code

3

Priority Queues

• Recall from last recording: priority queues are
not FIFO
• We always dequeue the object with the highest

priority regardless of when it was enqueued
• We can define a min heap or a max heap

• Min heap: smallest elements have highest priority
• Max heap: largest elements have highest priority

• Where might we see prioritie queues in the
“real world”?
• ER triage, network routers, airplane boarding…

Priority Queues

• If data is returned/removed according to
priority, then a heap can’t store values that
can’t be sorted
• Otherwise, how do we decide which elemen to

prioritize?

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PriorityQeues require
values that are comparable

Reminder: PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes + returns min element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Implementing PQs

• An OrderedVector (PriorityVector)
• Details in book & discussed last lecture

• Like a normal Vector, but no add(int i)
• Instead, add(Object o) places o at proper location according

to the ordering of all objects in the Vector

• O(n) to add/remove from vector
• Can we do better than O(n)?

• A Heap! (VectorHeap)
• Partially ordered binary tree
• O(log2n) to add/remove from heap

Heap

• A heap is a special type of tree
• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is important!)

• Values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

• Heap Invariant for nodes: For each child of each node
• node.value() <= child.value() // if child exists

• Several valid heaps for same data set (no unique
representation)

320 Priority Queues

2

1

3

2

2

1

3

2

22

3

11

2

2 3

(a) (b) (c) (d)

Figure 13.1 Four heaps containing the same values. Note that there is no ordering
among siblings. Only heap (b) is complete.

We will draw our heaps in the manner shown in Figure 13.1, with the mini-
mum value on the top and the possibly larger values below. Notice that each of
the four heaps contains the same values but has a different structure. Clearly,
there is a great deal of freedom in the way that the heap can be oriented—for
example, exchanging subtrees does not violate the heap property (heaps (c)
and (d) are mirror images of each other). While not every tree with these four
values is a heap, many are (see Problems 13.17 and 13.18). This flexibility
reduces the friction associated with constructing and maintaining a valid heap
and, therefore, a valid priority queue. When friction is reduced, we have the
potential for increasing the speed of some operations.

Principle 22 Seek structures with reduced friction.

We will say that a heap is a complete heap if the binary tree holding the valuesThis is
completely

obvious.
of the heap is complete. Any set of n values may be stored in a complete heap.
(To see this we need only sort the values into ascending order and place them
in level order in a complete binary tree. Since the values were inserted in as-
cending order, every child is at least as great as its parent.) The abstract notion
of a complete heap forms the basis for the first of two heap implementations of
a priority queue.

13.4.1 Vector-Based Heaps

As we saw in Section 12.9 when we considered the implementation of Ah-
nentafel structures, any complete binary tree (and therefore any complete heap)
may be stored compactly in a vector. The method involves traversing the tree in
level order and mapping the values to successive slots of the vector. When we
are finished with this construction, we observe the following (see Figure 13.2):

1. The root of the tree is stored in location 0. If non- , this location
references the minimum value of the heap.

Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT

(ArrayTree), but use extensible Vector instead
of array (makes adding elements easier)

• Recall from Binary Tree lecture 23:
• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2

– Remember: dividing Integers truncates the result

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

Implementing Heaps

• Strategy: make tree modifications that preserve tree
completeness, but may violate heap property. Then fix.
• Question: what does a complete tree look like in an array

representation?
• Add/remove never add gaps to array

• We always add in next available array slot (left-most available spot in
binary tree)

• We always remove using “final” leaf

• When elements are added and removed, do small amount of
work to “re-heapify”

Steps to insert into a PQ

1. Add new value as a leaf
2. “Percolate” the new value up the tree

while (value < parent’s value) {
swap value with parent

}

• This operation preserves the heap property since
new value was the only one violating heap property

Steps to remove from a PQ
1. Make a copy of the root node’s value (highest priority). This

will be our final result.
2. Replace the root node’s value with the value in the rightmost

leaf (removing the leaf). This violates the heap property.
3. “Push” value down through the tree to restore the heap

property:
while (value > at least one child) {

Swap value with the smaller child
}

• This operation preserves the heap property since the “new
root” was the only one violating heap property

Analyzing PQ Performance

• Insertion efficiency depends upon speed of:
• Finding a place to add new node
• Finding parent (to “percolate up” new node)
• Tree height

• Removal efficiency depends upon speed of
• Finding a leaf
• Finding locations of children (to “push down” new

root)
• Tree height

O(1)

O(1)
O(log2n)

O(1)

O(1)

O(log2n)

VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained: all root-to-leaf paths

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap
• How?

Next Class

• How to “heapify” a vector?
• With some algorithmic analysis, we can decide

between “Top-Down” and “Bottom-up”

• HeapSort
• Idea
• Performance
• Advantages

• “Skew Heaps”
• Brief overview

