
CSCI 136
Data Structures &

Advanced Programming

Lecture 13
Spring 2020

Profs Bill & Dan

Administrative Details

• Lab 5: Sorting with Comparators
• We give you the 2008 Williams student directory
• We ask a series of questions that you can solve by

sorting with Comparators and processing the
sorted list

• Midterm: Wednesday March 18
• Held in your scheduled Lab (same time and place)
• Study guide and sample exam will be posted
• Review session?

2

Last Time

• Induction practice
• Bubble sort
• “Just buble sort, dude!”

3

Today’s Outline

• Comparable: impose a sort order on objects
• Comparator: a class to implement sorting

flexibly and modularly
• More “Simple” Sorting
• Bubble, Insertion, and Selection Sorts
• General behavior

• Big-O
• Pros/cons

4

Objects?

• So far we’ve sorted integers using the notion
of “<”, “>”, and “=”

• What about non-primitive types, like a
Patient class?
• We need a way to impose an ordering on

arbitrary objects or else we can’t sort them

• We need it to be flexible so we can reuse our
sorting routines

java.lang.Comparable

• The Java language defines the Comparable
Interface that sortable objects implement:

public interface Comparable<T>

This interface imposes a total ordering on the objects of each
class that implements it. This ordering is referred to as the
class's natural ordering, and the class's compareTo method is
referred to as its natural comparison method.

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

java.lang.Comparable

• Objects that implement the Comparable
interface must provide one method:

int compareTo(T o)

Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as this
object is less than, equal to, or greater than the specified
object.

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Comparable Interface

public interface Comparable<T> {

//post: return < 0 if this smaller than other
// return 0 if this equal to other
// return > 0 if this greater than other
int compareTo(T other);

}

• Any class that implements Comparable provides compareTo()

Notes on compareTo()

• The magnitude of the values returned by compareTo() are
not important.
• We only care if the return value is positive, negative, or 0!

• Often we see -1, 0, 1, but it is up to the implementer

• compareTo() defines a “natural ordering” of Objects
• There’s nothing “natural” about it…

• We can use compareTo() to implement sorting algorithms
on generic List data structures!

Using the Comparable Interface

public static void bubbleSort(int data[], int n) {
int numSorted = 0;
int index;
while (numSorted < n) {

for (index = 1; index < n-numSorted; index++) {
if (data[index-1] > data[index])

swap(data, index-1, index);
}
// at least one more value is now in place
numSorted++;

}
}

Using the Comparable Interface

public static void bubbleSort(Comparable data[], int n) {
int numSorted = 0;
int index;
while (numSorted < n) {

for (index = 1; index < n-numSorted; index++) {
if (data[index-1].compareTo(data[index]) > 0)

swap(data, index-1, index);
}
// at least one more value is now in place
numSorted++;

}
}

More Notes on compareTo()

• The Comparable interface (Comparable<T>) is part of
the java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• Strings, or the Arrays class in java.util

• Note: Users of Comparable are urged to ensure that
compareTo() and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

Comparators

• Limitations with Comparable interface?
• Comparable permits 1 order between objects

• What if compareTo() isn’t the desired ordering?

• What if Comparable isn’t implemented?

• Solution: Comparators

13

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

14

Example
class Patient {

protected String severity;
protected String name;
public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }
public String getSeverity() { return severity; }

}

class SeverityComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getSeverity().compareTo(b.getSeverity());
}
// Note: No constructor; a “do-nothing” constructor is added by Java

}

public void <T> sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i-1], a[i]) > 0) {…}

}

sort(patients, new SeverityComparator());

Note that Patient does
not implement
Comparable or
Comparator!

15

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And then recompiling class X L

• Comparator Interface
• Allows creation of “compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Ex: Sort Strings by length (alphabetically for same-length)
• Ex: Sort names by last name instead of first name 16

Sorting Preview: Bubble Sort
• Simple sorting algorithm that works by ascending

through the list to be sorted, comparing two items
at a time, and swapping them if they are in the wrong
order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list

Bubble Sort Example

• First Pass:
• (5 1 3 2 9) ® (1 5 3 2 9)
• (1 5 3 2 9) ® (1 3 5 2 9)
• (1 3 5 2 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 3 2 5 9)

• Second Pass:
• (1 3 2 5 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 2 3 5 9)
• (1 2 3 5 9) ® (1 2 3 5 9)

• Third Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)
• (1 2 3 5 9) -> (1 2 3 5 9)

• Fourth Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

http://www.youtube.com/watch?v=lyZQPjUT5B4

5 1 3 2 9

http://www.youtube.com/watch?v=lyZQPjUT5B4

Sorting Analysis: Bubble Sort
• Worst-case time complexity?

• O(n2)
• Each pass swaps all the way to the end
• As described, doesn’t recognize that list is sorted – keeps going

• Space complexity?
• O(n)

• It performs an in-place sort: no extra space is needed

• Stable?
• Yes

• The relative order of elements is preserved in the final array

Sorting Preview: Insertion Sort
• Simple sorting algorithm that works by building a

sorted list one entry at a time
• Keep a sorted list in the low region of the array
• Keep the to-be-sorted part in the upper region
• Each round you “grow” the sorted region by

swapping the first unsorted element backwards into
its sorted location

Insertion Sort Example
• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7

Red: sorted region.
Each round, swap the first unsorted item back into sorted region

Sorting Analysis: Insertion Sort
• Worst-case time complexity?

• O(n2)
• Each element may need to swap all the way back
• Efficient on lists that are already substantially sorted. Actually has a

best case of O(n)!

• Space complexity?
• O(n)

• It performs an in-place sort: no extra space is needed

• Stable?
• Yes

• The relative order of elements is preserved in the final array

Sorting Preview: Selection Sort

The algorithm works as follows:
• Find the maximum value in the list
• Swap it with the value in the last position (since the last

position is the place where the maximum element goes)
• Repeat the steps above for the unsorted prefix of the list

Sorting Preview: Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

Swap 27 with 16
Swap 16 with 5
Swap 11 with 5
Swap 5 with 3
Done!

Sorting Analysis: Selection Sort

• Similar to insertion sort, but performs worse than
insertion sort in general

• Worst-place time complexity?
• O(n2)

• Need to scan the list for the largest element every round, but only
“swaps” once per round

• As described, doesn’t recognize that list is sorted – keeps going

• Space complexity?
• O(n)

• It performs an in-place sort: no extra space is needed

“Basic” Sorting Algorithm Recap
• BubbleSort
• Swaps consecutive elements of a[0..k] until largest

element is at a[k]; Decrements k and repeats

• InsertionSort
• Assumes a[0..k] is sorted and swaps a[k+1]

backwards across a[0..k] until a[0..k+1] is sorted
• Increments k and repeats

• SelectionSort
• Finds largest item in a[0..k] and swaps it with a[k]
• Decrements k and repeats

26

Basic Sorting Algorithms
(All have worst-case O(n2) runtime)

• BubbleSort
• Always performs cn2 comparisons and might

need to perform cn2 swaps

• InsertionSort
• Might perform cn2 comparisons and cn2 swaps,

but in best case cn comparisons and 0 swaps

• SelectionSort
• Always performs cn2 comparisons but only O(n)

swaps 27

Swap!

• The “Basic” sorts all use a utility method: swap.
How would you implement swap?

private static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

Comparators

• Limitations with Comparable interface?
• Comparable permits 1 order between objects

• What if compareTo() isn’t the desired ordering?
• What if Comparable isn’t implemented?

• Solution: Comparators

30

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

31

Example
class Patient {

protected int age;
protected String name;
public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }
public int getAge() { return age; }

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}
// Note: No constructor; a “do-nothing” constructor is added by Java

}

public void <T> sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

32

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And then recompiling class X

• Comparator Interface
• Allows creation of “compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Ex: Sort Strings by length (alphabetically for same-length)
• Ex: Sort names by last name instead of first name 33

Selection Sort with Comparator

34

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0)
maxPos = i;

return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• Base case:
• If the list is of length 0 or 1, then it is already sorted.

Return the sorted list.
• Divide the unsorted list into two sublists of about half the

size of original list.
• Recursive call:

• Sort each sublist by re-applying merge sort.
• Merge the two sublists back into one sorted list.

35

Merge Sort

• [8 14 29 1 17 39 16 9]

• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

36

Transylvanian Merge Sort Folk Dance

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort
• How would we implement it?
• Pseudocode:
//recursively mergesorts A[from..To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from < to)
// find midpoint
mid = (from + to)/2
//sort each half
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
// merge sorted lists
merge(A, from, to)

But `merge` hides a number of important details….
37

Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)!

• But O(2n) = O(n)
38

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]

• [8 14 29 1] [17 39 16 9] split
• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

39

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort: O(n2)
• Merge sort: O(n log n)

• Are there any problems or limitations with
Merge sort?

• Why would we ever use any other algorithm
for sorting?

41

Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

42

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

43

Recall Merge Sort
private static void mergeSortRecursive(Comparable data[],

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
44

Quick Sort

// pre: low <= high
// post: data[low..high] in ascending order
public void quickSortRecursive(Comparable data[],

int low, int high) {
int pivot;
/* base case: low and high coincide */
if (low >= high) return;

/* step 1: split using pivot */
pivot = partition(data, low, high);
/* step 2: sort small */
quickSortRecursive(data, low, pivot-1);
/* step 3: sort large */
quickSortRecursive(data, pivot+1, high);

}

45

Partition

1. Put first element (pivot) into sorted position

2. All to the left of “pivot” are smaller and all
to the right are larger

3. Return index of “pivot”

46

Partition by Hungarian Folk Dance

https://www.youtube.com/watch?v=ywWBy6J5gz8

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data, left++, right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data, left, right--);

} else {
return right;

}
}

} 47

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)

• If data is already sorted, partition splits list into
groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

48

Merge vs. Quick

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

49

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

50

Sorting Wrapup
Time Space

Bubble Worst: O(n2)

Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)

Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)

Worst: O(n2)

O(n) : n + c

51

More Skill-Testing
(Try these at home)

Given the following list of integers:

9 5 6 1 10 15 2 4
1) Sort the list using Bubble sort. Show your work!
2) Sort the list using Insertion sort. Show your work!
3) Sort the list using Merge sort. Show your work!
4) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

52

