
CSCI 136
Data Structures &

Advanced Programming

Lecture 12
Spring 2020
Bill and Dan

Administrative Details

• Lab 4 Due Monday
• Coordinate with your partner to program in person

• Colloquium Today at 2:30 in Wege
• Nate Derbinski – Adventures in Hybrid

Architectures for Intelligent Systems

• Upcoming power outages will affect our labs
• Look for announcements on Piazza and plan accordingly
• We have no control over this… but we can try to minimize

impact with planning

Last Time

• Other List implementations
• Compared Linked Lists (single, double, circular)

with Vectors
• No clear winner in accross-the-board

performance
• Linked lists are a “pay as you go” recursively defined

structure
• Vectors are random access, but have “bursty” add

costs
– Cost to add depends on (hidden) internal array: hard to

predict

Today’s Plan
• List Tradeoffs: Revisit Vector Growth
• Additive Growth: O(n2)
• Multiplicative Growtn: O(n)

• Prove these costs using induction
• Mathematical cousin to recursion

• Use induction to reason about code

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to
exceed a multiple of d
• At sizes 0d, 1d, 2d, … , (n/d)d.

• Copying an array of size k*d takes c*k*d steps for
some constant c, giving a total of:

5

= !" ($%)(
$
% + 1)/2 = +(,-)= !" ∑012$/% 34

012

$/%
!3"

Vectors: Add Method Complexity

As a concrete example, let’s choose our fixed growth
amount, d, to be 1.

• The array will be copied each time its capacity needs to
exceed a multiple of 1
• Grow at sizes 0, 1, 2, … , n-1.

We can use induction to prove that growing by 1 will
result in O(n2) work.

6

Induction

• The mathematical cousin of recursion is induction

• Induction is a proof technique

Induction proofs have three key components:
• Base case(s): show the claim is true for all base cases
• Assume: assume the claim is true for some problem size

• Show: using your assumption, show that you can you
can prove your claim for the next problem size

7

Mathematical Induction
• Additive Growth: Prove that for every n ≥ 0

!" ∶ ∑%&'" (= 0 + 1 + …+ - =
"("/0)

2
• Proof by induction:
• Base case: Pn is true for n = 0
• Assume: Pn is true for some n≥0
• Show: If Pn is true for some n≥0, then Pn+1 is true.

(Using a smaller version of the problem, we solve a larger
version)

Mathematical Induction

!" ∶ ∑%&'" (= 0 + 1 + …+ - =
"("/0)

2
• Prove the base case: Pn is true for n = 0

• Just check it! Substitute 0 into the equation.
0 = 0(1)/2

• Assume the inductive hypothesis: Pn is true for
some n≥0

• Then use assumption to show that Pn+1 is true.

!"/0: 0 + 1 + …+ - + - + 1 = - + 1 - + 1 + 1
2 = (- + 1)(- + 2)

2

" "/0
2 + - + 1 = " "/0 / 2"/2)

2 =
"2/6"/2

2 = ("/0)("/2)
2

• First equality holds by assumed truth of Pn!

Write out Pn+1 and target equality

This is Pn!

Vectors: Add Method Complexity

Suppose we instead grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to
exceed a power of 2
• At sizes 0, 1, 2, 4, 8 …, n/2

• The total number of elements are copied when n
elements are added is:
• 1 + 2 + 4 + ... + n/2

• Very cool! Let’s show this is the case using induction.
10

= n-1 = O(n)

Mathematical Induction

• Prove:

• Base case: Pn is true for n = 0
• Assume: Pn is true for some n≥0
• Show: If Pn is true for some n≥0, then Pn+1 is true.

• (Practice Problem) Prove:

€

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case
• Inductive case that uses simpler form of problem

• We can prove things about recursive functions using
induction.

• Example: Let’s use induction to prove that fact(n) requires n
multiplications
• Base case: fact(0) requires 0 multiplications
• Assume: fact(n) requires n multiplications for some n≥0
• Show: if fact(n) is true for some n≥0, then fact(n+1) is true

fact(n) requires n multiplications

• Prove that fact(n) requires n multiplications
• Base case: n = 0 returns 1

• 0 multiplications

• Inductive Hypothesis: Assume true for all k<n, so fact(k)
requires k multiplications.

• Prove, from simpler cases, that the nth case holds
• fact(n) performs 1 multiplication (n*fact(n-1)).
• We know fact(n-1) requires n-1 multiplications (by our I.H.)
• 1+n-1 = n

– therefore fact(n) requires n multiplications.

Conclusions

• Induction is a valuable proof technique
• We’ve shown that vector doubling is superior to

fixed-growth allocations
• Sped up our runtime to amortized O(1) adds!

• We’ve proven things about recursive functions
• Convinced ourselves that our runtime is good!

Counting fib() method calls
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call
• Inductive Hypothesis: Assume that for some n≥2, fib(n-1) makes at

least fib(n-1) calls to fib() and fib(n-2) makes at least
fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)

– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!

