CSCI 136

Data Structures \&
 Advanced Programming

Lecture 12
Spring 2020
Bill and Dan

Administrative Details

- Lab 4 Due Monday
- Coordinate with your partner to program in person
- Colloquium Today at 2:30 in Wege
- Nate Derbinski - Adventures in Hybrid Architectures for Intelligent Systems
- Upcoming power outages will affect our labs
- Look for announcements on Piazza and plan accordingly
- We have no control over this... but we can try to minimize impact with planning

Last Time

- Other List implementations
- Compared Linked Lists (single, double, circular) with Vectors
- No clear winner in accross-the-board performance
- Linked lists are a "pay as you go" recursively defined structure
- Vectors are random access, but have "bursty" add costs
- Cost to add depends on (hidden) internal array: hard to predict

Today's Plan

- List Tradeoffs: Revisit Vector Growth
- Additive Growth: $O\left(n^{2}\right)$
- Multiplicative Growtn: O(n)
- Prove these costs using induction
- Mathematical cousin to recursion
- Use induction to reason about code

Vectors: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0d, 1d, 2d, ... , (n/d)d.
- Copying an array of size $k * d$ takes $\mathrm{c} * \mathrm{k} * \mathrm{~d}$ steps for some constant c, giving a total of:

$$
\sum_{k=1}^{n / d} c k d=c d \sum_{k=1}^{n / d} k=c d\left(\frac{n}{d}\right)\left(\frac{n}{d}+1\right) / 2=O\left(n^{2}\right)
$$

Vectors: Add Method Complexity

As a concrete example, let's choose our fixed growth amount, d, to be I.

- The array will be copied each time its capacity needs to exceed a multiple of 1
- Grow at sizes $0,1,2$, .. , n-1.

We can use induction to prove that growing by I will result in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ work.

Induction

-

The mathematical cousin of recursion is induction Induction is a proof technique

Induction proofs have three key components:

- Base case(s): show the claim is true for all base cases
- Assume: assume the claim is true for some problem size
- Show: using your assumption, show that you can you can prove your claim for the next problem size

Mathematical Induction

- Additive Growth: Prove that for every $\mathrm{n} \geq 0$

$$
P_{n}: \sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P_{n} is true for $n=0$
- Assume: P_{n} is true for some $n \geq 0$
- Show: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true. (Using a smaller version of the problem, we solve a larger version)

Mathematical Induction

$$
P_{n}: \sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Prove the base case: P_{n} is true for $n=0$
- Just check it! Substitute 0 into the equation.

$$
0=0(\mathrm{I}) / 2
$$

- Assume the inductive hypothesis: P_{n} is true for some $n \geq 0$
- Then use assumption to show that $\mathrm{P}_{\mathrm{n}+1}$ is true. Write out P_{n+1} and target equality $P_{n+1}: 0+1+\ldots+n+(n+1)$
This is $P_{n}!$

$$
\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2 n+2)}{2}=\frac{n^{2}+3 n+2}{2}=\frac{(n+1)(n+2)}{2}
$$

- First equality holds by assumed truth of P_{n} !

Vectors: Add Method Complexity

Suppose we instead grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
- At sizes $0,1,2,4,8$..., n/2
- The total number of elements are copied when n elements are added is:
- $1+2+4+\ldots+n / 2=n-1=O(n)$
- Very cool! Let's show this is the case using induction.

Mathematical Induction

- Prove: $\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
- Base case: P_{n} is true for $n=0$
- Assume: P_{n} is true for some $n \geq 0$
- Show: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.
- (Practice Problem) Prove:

$$
0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}
$$

What about Recursion?

- What does induction have to do with recursion?
- Same form!
- Base case
- Inductive case that uses simpler form of problem
- We can prove things about recursive functions using induction.
- Example: Let's use induction to prove that fact(n) requires n multiplications
- Base case: fact(0) requires 0 multiplications
- Assume: $\operatorname{fact}(\mathrm{n})$ requires n multiplications for some $\mathrm{n} \geq 0$
- Show: if fact(n) is true for some $n \geq 0$, then fact $(n+1)$ is true

fact(n) requires n multiplications

- Prove that fact(n) requires n multiplications
- Base case: $\mathrm{n}=0$ returns I
- 0 multiplications
- Inductive Hypothesis: Assume true for all $k<n$, so fact(k) requires k multiplications.
- Prove, from simpler cases, that the $n^{\text {th }}$ case holds
- fact(n) performs 1 multiplication ($n *$ fact ($n-1$)).
- We know fact ($\mathrm{n}-1$) requires $\mathrm{n}-1$ multiplications (by our l.H.)
- $1+\mathrm{n}-1=\mathrm{n}$
- therefore fact (n) requires n multiplications.

Conclusions

- Induction is a valuable proof technique
- We've shown that vector doubling is superior to fixed-growth allocations
- Sped up our runtime to amortized $\mathrm{O}(\mathrm{I})$ adds!
- We've proven things about recursive functions
- Convinced ourselves that our runtime is good!

Counting fib() method calls

- Prove that $\mathrm{fib}(\mathrm{n})$ makes at least $\mathrm{fib}(\mathrm{n})$ calls to fib()
- Base cases: $\mathrm{n}=0$: I call; $\mathrm{n}=\mathrm{I}$; I call
- Inductive Hypothesis: Assume that for some $n \geq 2$, fib ($n-1$) makes at least $\mathrm{fib}(\mathrm{n}-1)$ calls to fib() and $\mathrm{fib}(\mathrm{n}-2)$ makes at least fib($n-2$) calls to fib().
- Claim: Then $f i b(n)$ makes at least $f i b(n)$ calls to $f i b()$
- I initial call: fib(n)
- By induction: At least fib(n-I) calls for fib(n-I)
- And as least fib(n-2) calls for fib(n-2)
- Total: $I+$ fib $(n-I)+f i b(n-2)>f i b(n-I)+f i b(n-2)=f i b(n)$ calls
- Note: Need two base cases!

