CSCI 136
Data Structures &
Advanced Programming

Lecture | |
Spring 2020
Bill | & Dan

Administrative Details

e Lab 4
e Another Partner Lab

* New checkstyle rule

* Less code, more thinking

* Things | feel strongly about:
e Draw Pictures!
* Pair program!

* Any announcements!

Last Time

e Abstraction
* |Interfaces = Contract
e Abstract classes = Contract + implementation
* So far, we’ve explored (through Vector) the:

e List Interface

o AbstractList base class

Today

* Implementing Lists with linked structures
 Singly Linked Lists
e Circularly Linked Lists
* Doubly Linked Lists

e How does each differ from Vector!?

The List Interface

interface List {

size()
1sEmpty ()
contains(e)
get (1)

set(1i, e)
add(i, e)
remove (i)
addFirst(e)
getLast ()

It” s an interface...therefore it
provides no implementation

Can be used to describe many
different types of lists

Vector implements List

Other implementations are
possible...

Pros and Cons of Vectors

Pros Cons

 Good general purpose list ¢ Slow updates to front

* Dynamically resizeable of list (why?)
e Fast access to elements * Hard to predict time
e vec.get (387425) finds for add (depends on
item 387425 in the same internal array size,
number of operations which is hidden)

regardless of vec's size * Potentially wasted space

What if we didn’t have to copy the array each time we grew vec!?

6

List Implementations

e List is a general concept for storing/organizing data
e Vector implements the List interface
* We'll now explore other List implementations

e SinglyLinkedList

e CircularlyLinkedList

e DoublyLinkedList

Linked List Basics

* There are two key aspects of Lists

e Elements of the list

e Store data, point to the “next” element

* The list itself

* Includes head (sometimes tail) member variable

* Visualizing lists

head

N S . S

Linked List Basics

e List nodes are recursive data structures

e Each “node” has:
e A data value

* A next variable that identifies the next element in
the list

e Can also have “previous” that identifies the
previous element (“doubly-linked” lists)

* What methods does the Node class need?

SinglyLinkedLists

* How would we implement singlyLinkedListNode!

e SLLN = Node in the book (in Ch 9)

SinglyLinkedListNode = SLLN in my notes

value

e How about SinglyLinkedList!

* What would the following look like?

SinglyLinkedList = SLL in my notes

next

elementCount=3

head —»

addFirst(E d)

getFirst()!

addLast(E d)! (more interesting)
getLast()!

More SLL Methods

* How would we implement:
e get(int 1index),set(E d, int index)

e add(E d, int index),
remove(1nt 1ndex)
e removeLast () is just remove(size() - 1)
e removeFirst () is just remove(0)

e Left as an exercise:
e contains(E d)
e clear ()

* Note: E is value type (generic)

Get and Set

//pre: index < size() — 1, size() > 0
public E get(int index) {
SLLN finger = head;

for (int 1=0; i<index; i++){ \We should add
finger = finger.next(); . .
} error-checking in
return finger.value(); our functions.
' Preconditions aren'’t
//pre: index < size() — 1, size() > 0 enforced by the
public E set(E d, int index) { Java |anguage!
SLLN finger = head;
for (int 1=0; i<index; i++){
finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;
}

Add

public void add(E d, int index) {
if(index > size()) return null;

E old;
if (index==0) { addFirst(d); }
else if (index==size()) { addLast(d); }

else {
SLLN finger = head;
SLLN previous = null;
for (int i=0; i<index; i++) {
previous = finger;
finger = finger.next();

}
SLLN elem = new SLLN(d, finger);

previous.setNext(elem); // new “ith” item added after i-1

count++;

Remove

public E remove(int index) {
if(index >= size()) return null;

E old;

if (index==0) { // Special case: remove from head
old = head.value();
head = head.next();
count--;
return old;

}
else {
SLLN finger = head;
for (int i=0; i<index - 1; i++) { //stop one before index
finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;
}

Linked Lists Summary

Recursive data structures used for storing data
More control over space use than Vectors

Easy to add objects to front of list
Components of SLL (SinglyLinkedList)

e head, elementCount

Components of SLLN (Node):

e next, value

Vectors vs. SLL

 Compare performance of:
e size()
* addLast (), removeLast (), getLast()
e addFirst(), removeFirst (), getFirst()
e get(int 1index), set(E d, 1nt index)
e remove(1lnt index)
e contains(E d)

* remove(E d)

SLL Summary

e SLLs provide methods for efficiently modifying front
of list

e Modifying tail/middle of list is not quite as efficient

e SLL runtimes are consistent
* No hidden costs like Vector.ensureCapacity()
* Avg and worst case are always the same

e Space usage
* No empty slots like vectors

* But keep extra reference for each value

e overhead proportial to list length
— (but this is constant and predictable)

DoublyLinkedLists

Keep reference/links in both directions
e previous and next
DoublyLinkedListNode instance variables
 DLLN next, DLLN preyv, E value

Space overhead is proportional to number of elements
ALL operations on tail (including removelast) are fast!

Additional complexity in each list operation

e Example: add(E d, int index)

* Four cases to consider now: empty list, add to front, add to
tail, add in middle

public class DoublyLinkedNode<E>
{
protected E data;

protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,
DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

data = v;

nextElement = next;

if (nextElement != null)
nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null)

previousElement.nextElement = this;

CircularlyLinkedLists

Use next reference of last element to reference head of
list

Replace head reference with tail reference

Access head of list via tail.next

ALL operations on head are fast!

addLast() is still fast

Only modest additional complexity in implementation
Can “cyclically reorder” list by changing tail node
Question: What'’s a circularly linked list of size 1?

20

Food for Thought:
SLL Improvements to Tail Ops

* |n addition to Node head and int elementCount, add
Node tail reference to SLL

e Result
e addlast and getlLast are fast

* removelast is not improved

* We need to know element before tail so we can reset tail pointer

e Side effects

* We now have three cases to consider in method
implementations: empty list, head == tail, head != talil

e Think about addFirst(E d) and addLast(E d)

21

