CSCI 136

Data Structures \&
 Advanced Programming

Lecture 7

Spring 2020
Bill and Dan

Administrative Details

- Lab 2 Due Today
- Anyone Stuck?
- Lab 3 Wednesday
- Partner Lab
- One repository where both people have access
- Beware of merge conflicts!
- There will be "warm-up" problems, not a design doc
- We'll go over warm-up questions at the start of lab, but thinking about them will really get you to practice "thinking recursively"

Last Time

- Measuring Growth
- Rough discussion of Big-O w.r.t. Vectors
- We care about trends
- Goal: determine how performance scales with input size.
- We often care most about the worst case behavior, but we can analyze best, worst, and average cases

Today

- Revisit Vector growing examples
- Recursion
- Mathematical Induction

Vector Operations: Worst-Case

Let $\mathrm{n}=$ Vector size (not capacity!):

- $\mathrm{O}(\mathrm{I})$ operations (cost is same regardless of size):
- size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- $O(n)$ operations (cost grows proportionally to size):
- indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $O(1)$ but add (elt, i) is $O(n)$
- Otherwise, depends on ensureCapacity () time
- Time to copy array: O (n)

Vectors: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ... , n/d.
- Copying an array of size kd takes ckd steps for some constant c, giving a total of

$$
\sum_{k=1}^{n / d} c k d=c d \sum_{k=1}^{n / d} k=c d\left(\frac{n}{d}\right)\left(\frac{n}{d}+1\right) / 2=O\left(n^{2}\right)
$$

Vectors: Add Method Complexity

Suppose we grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
- At sizes $0,1,2,4,8$..., n/2
- The total number of elements are copied when n elements are added is:
- $1+2+4+\ldots+n / 2=n-1=O(n)$
- Very cool! (So cool that we'll prove it later using induction!)

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- O(I): constant time and space (same cost regardless of n)
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear scan (e.g., list lookup)
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{\mathrm{k}}\right)$: cell phone switching algorithms
- $O\left(2^{n}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $\mathrm{O}(\mathrm{n}!)$: traveling salesman problem (in fact $\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$)

Recursion

- General problem solving strategy
- Break problem into sub-problems of same type
- Solve sub-problems
- Combine sub-problem solutions into solution for original problem
- Recursive leap of faith!

Recursion

- Many algorithms are recursive
- Can be easier to understand (and prove correctness/state efficiency of) than iterative versions
- They feel elegant
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Think Recursively

- In recursion, we always use the same basic approach
- What's our base case? [Sometimes "cases"]
- $\mathrm{n}=0$? list.isEmpty()?
- What's the recursive relationship?
- How can we use the solution to a smaller version of the problem to answer the question?

In-person Demo

- How much money do I have in my Jar?
- Noah says: "I have too much money to count"
- Alec says: "That is just not true"
- Noah says: "It's just impossible for anyone to count that high"
- Alec says: "l'm on vacation, and l've got nothing better to do. You're sitting here and we're counting this money"
- Noah had \$37.22, a few rocks, and an enamel pin

In-person Demo

- How much money do I have in my Jar?
- Suppose I know the value of any coin, and I can add two numbers.
- What is the base case? (What is the simplest jar that I can look at and know how much money it contains?)
- What is the recursive step? (How might I take a full jar, and decompose it into smaller cases that I know how to handle?)

Practice Writing Code: Factorial

Definition

- $n!=n \cdot(n-I) \cdot(n-2) \cdot \ldots \cdot I$
- How can we implement this?
- We could use a for loop...
- But we could also write it recursively
- $n!=n \cdot(n-l)!$
- 0 ! = I
- With a partner, try to write fact()

Practice Writing Code: Factorial

Definition

- $n!=n \cdot(n-l)!$
- 0 ! = I
public static
fact

// base case?
// recursive case?
\}

Factorial

Fact.java

```
public class Fact{
// Pre: n >= 0
public static int fact(int n) {
    // base case
    if (n==0) {
        return 1;
    }
    // recursive leap of faith
    else {
        return n*fact(n-1);
    }
}
public static void main(String args[]) {
    System.out.println(fact(Integer.valueOf(args[0]).intValue()));
}

\section*{Recursion Tradeoffs}
- Advantages
- Often easier to construct recursive solution
- Code is usually cleaner (so elegant!)
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
- E.g. recursive fibonacci method```

