
CS136: Data Structures &
Advanced Programming
Spring 2020
Williams College

Administrative Details
● Lab 2 is due Monday

○ See office hour calendar for TA support this weekend
● Colloquium Today

○ Thesis student proposals
● I will be gone next week beginning at 4pm Monday

○ Going to CA for a conference called FAST
○ I'll be checking Piazza, our anonymous (to classmates) forum for questions, but

office hours will be hard to hold from CA… a good chance to introduce yourself
to Dan!

Last Time
Potpourri of Topics helpful for lab

Essential Object methods:

● public String toString()
● public boolean equals(Object other)

Association<KeyType, ValueType>

WordFreq.java (example code)

Today
Deep dive into Vector class, including:

● Where to find the source code
● Important implementation details
● Design tradeoffs

We'll start to think about “efficiency”

● What is the cost of our implementation in the worst case?
○ We'll define performance by counting “operations”
○ We’ll define space usage by counting “elements” or “slots”
○ We'll formally explore asymptotic analysis next week

Vector Implementation: Getting the Code
Structure5:

● Code associated with the textbook is publicly available
○ bailey.jar - archive used by javac
○ structure-source.tgz - compressed bundle of Java text files

■ After uncompressing, src/structure5 has the code we want!
● Javadoc for the code is publicly available too

See "handouts" page for instructions on how to set up a Unix machine
so you can use structure5 code in your own programs

http://www.cs.williams.edu/~bailey/JavaStructures/Software.html
http://www.cs.williams.edu/~bailey/JavaStructures/Software_files/bailey.jar
http://www.cs.williams.edu/~bailey/JavaStructures/Software_files/structure-source.tgz
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/index.html
https://williams-cs.github.io/cs136s20-www/handouts.html

Vector<E> API (select methods)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)

● capacity()
● ensureCapacity()
● clear()

● toString()

Vector Details: Storing Data
Internally, the Vector class stores an array of type Object

● The array is not necessarily filled
● We keep track of the number of current elements in the array

using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our actual count?
○ What happens if we try to add an element but the array is full?

● Overloaded constructor(s) allow us to specify an initial array size
(the Vector’s capacity)
○ Default capacity used if none is provided

Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at a
given index

● How do I determine where to find an element given it's index?
● How expensive is it to find the offset if the array has:

○ 1 element?
○ 10 elements?
○ 100 elements?
○ 1 million elements?

● v.get(int) uses bracket notation to access elementData[i]
● v.set(int, E) uses bracket notation to update elementData[i]

Get/set cost is the same as the cost of accessing/updating an array.

Vector Details: add(E)
Arrays don't have any notion of "appending"

● What does it mean to “append” to a Vector?

When we think about performance, we often care most about the
"worst case"

● What are the "worst cases" that we need to consider when
appending to a Vector?

● How expensive are these worst cases when the Vector has:
○ 1 element?
○ 100 elements?
○ n elements?

Vector Details: add(int, E)
Arrays don't have any notion of "inserting"

● What does it mean to insert into the middle of a Vector?

When we think about performance, we often care most about the
"worst case"

● What are the "worst cases" that we need to consider when
inserting an element into a Vector?

● How expensive are these worst cases when the Vector has:
○ 1 element?
○ 10 elements?
○ n elements?

Vector Details: contains(int, E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)

● What are the "worst cases" that we need to consider when
searching for an element in a Vector?

● How expensive are these worst cases when the Vector has:
○ 1 element?
○ 100 elements?
○ n elements?

Example: v.contians(new Associaton(...))
The Association class defines the equality of a and b as:

return a.getKey().equals(b.getKey());

How would I search a Vector<Association<String, Integer> for the
wordcount associated with the String "forefathers"?

● I’d probably use a for loop, comparing each element's key against
the String "forefathers"

Are there any Vector methods I could use instead? How?

Thinking beyond the Vector API
Consider a Vector of student GitHub IDs. I want to make sure
everyone’s IDs are included exactly once. This means I need to check
if there are any duplicates.

How would I check for duplicates?

● How expensive is this (in the worst case) when the Vector has:
○ 2 element?
○ 200 elements?
○ n elements?

Lab 2: WordGen
Think about the roles of each class:

● FrequencyList counts letters, samples letters
○ Nothing else!

● Table maps Strings to FrequencyLists. Your table should let you:
○ add an observation that a letter follows a particular string
○ yield a new letter that is randomly chosen from the distribution of letters that

follow a particular string
● WordGen should parse your text, and then generate a new text
● Keep the state of each class limited to the minimum it needs to do

its task
○ Abstraction is the key to writing clean, testable, and debuggable code!

