
CSCI 136
Data Structures &

Advanced Programming

Lecture 3
Spring 2020

Instructors: Bill & Dan

Administrative Details

• Lab today in TCL 216 & 217a
• Lab is due by 8pm Monday

• To submit: Push your repository to github (see lab handout)

• Lab design docs are usually “due” at beginning of lab
• Written design docs will be required for most labs
• You’ll discuss with another student at start of lab
• Several implementation options

• Some may be better than others.... talk it out with each other and
with us!

• Since we are still getting into things, we will talk
about design docs and begin with a Nim example

2

Last Time
• Some Java Examples (Hellow.java, Sum.java)

• Entering, editing, compiling, running programs
• User input: Scanner, argv[]
• Primitive and numeric types
• System.out.prinln(…)

3

Today’s Outline

• Objects!
• OOP is a powerful way to organize your code
• What features does Java provide to support OOP?

• Design documents
• Debug our logic before our code

• Nouns: variables
• Verbs: methods

• Nim
• Lab 1 Demo

4

5

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs are collections of objects
• Cooperate to complete tasks

• Represent “state” of the program
• Communicate by sending messages to each other

• Through method invocation

6

Object-Oriented Programming
• Objects can model:
• Physical items - dice, board, dictionary
• Concepts – date, time, words, relationships
• Processing - sort, search, simulation

• Objects contain:
• State (instance variables)

• Attributes, relationships to other objects, components
– Letter value, grid of letters, number of words

• Functionality (methods)
• Accessor and mutator methods

– addWord, lookupWord, removeWord

7

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable (field)

declarations
• Functionality: method declarations
• Constructor(s): special method(s) describing the

steps needed to create an object (instance) of this
class type

A Programming Principle

Use constructors to initialize the state of an object,
nothing more.

• State: instance variables
• Frequently constructors are short simple methods
• More complex constructors will typically use

helper methods.
• You constructors can call other constructors to

reuse code

8

Access Modifiers

• public and private are called access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes
• private : Accessible only to the class declaring it

• There are other levels of access that we’ll see in
more detail later (e.g., protected)

• Data-Hiding (encapsulation) Principle
• Make instance variables private/protected
• Use public methods to access/modify object data

9

Nim Design

• What is “the data”?
• How should we represent a single pile?
• How should we represent all of the piles?

• What questions will we ask of the data?
• void makeMove(whichPile, howMany)
• boolean isLegalMove(whichPile, howMany)
• toString() ß We’ll talk about later
• isGameOver()
• whosTurnIsIt()
• swapTurns()

10

LET’S IMPLEMENT NIM!

11

Nim Implementation

• Of Note:
• toString() let’s us separate the representation of

the board from the display.
• Do NOT keep two versions of the game state.
• Instead, generate a String representation on demand.
• Why?

• Multiple constructors; some call each other
• Reuse code with overloading

• Replicate this design process for Lab 1 Coinstrip

12

At This Point, Ready for Lab 1!

• Basic Java syntax
• Java types: primitives, arrays, classes
• Control structures: branches, loops, functions
• Programmer-defined types: class types
• Essential Java classes:

• String
• Random
• Scanner (import java.util.Scanner;)

• We will learn to appreciate Unix, git, and the
command line together
• You will master them someday (it takes time!)

13

COINSTRIP DEMO

14

CoinStrip Design

• How to store game state? Think about:
• Space needs
• Time to find coin

• Useful methods?
• void makeMove(whichCoin, howFar)
• boolean legalMove(whichCoin, howFar)
• toString() ß We’ll talk about later

• What, if anything, did lab description omit?
• Form of “game board” to show players

15

