
CS136: Data Structures & 
Advanced Programming
Spring 2020
Williams College



Administrative Details
● Lab 1 is online

○ Complete Pre-lab Step 0 by 4pm today
○ Getting to Know you form
○ Check that you can login to your CS account — else see Mary Bailey from 2-4pm

● TA hours start on Wednesday: see the TA and Office Hours 
calendar on the course webpage

● Reminder: no class Friday in celebration of Valentine's day Winter 
Carnival



Last Time
Course overview, syllabus details

Essential Unix commands so far:

● Compile 
○ $ javac File.java

● Run 
○ $ java File

● Directory/file system navigation
○ $ ls
○ $ cd new_directory



Today
We'll write some code

● Hello World!
● Sum two numbers
● Nim

We'll think about our first lab

● How do we break down a complex program into discrete tasks?
● How should we begin to think about program design?
● What exactly is the first lab?



Our First Program: Hello World
Of note:

● public static void main(String args[])
○ The entry point into any Java program

● System.out.println(...)
○ How we communicate text to the outside world (i.e., the terminal)
○ Arguments are converted to String objects using their toString() method

■ More on this later!
● Everything in Java is a class, even if there is nothing in it!

○ public class Hello, but we never create a Hello object or call Hello
methods...



Programs accepting input: Sum.java
Of note:

● args[] array contains command line arguments, one String per 
element

● Must convert to appropriate type — see Javadoc when you have 
questions!

● java.util.Scanner lets us receive user input interactively
● java.util.Random lets us pull numbers from a pseudo-random 

number generator



Interactive Program Example: Nim
Nim is a "popular" game played with piles of matchsticks

● Players take turns removing matchsticks from piles
○ Each turn, player must remove a nonzero number of matches from a single pile

● A player loses when it is their turn and there are no matchsticks 
left to remove

Let's play a demo!

https://en.wikipedia.org/wiki/Nim


Interactive Program Example: Nim
Design process from last class:

1. Identify data for a problem
2. Identify questions to answer about data
3. Design data structures and algorithms to answer questions 

correctly and efficiently (Note: not all correct solutions are 
efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and reusable

Let's focus on 1, 2, and 3… we'll tackle 4 tomorrow!



Tips for writing Java
● Start with comments

○ Make a plan before you write any code — debug your logic before your Java
● Always Be Compiling

○ It is easier to catch errors early, one at a time
● Write in testable units

○ Compile, run, compile, run, compile, run …
● When possible, move code into methods so you can reuse it!

○ Common operations? Displaying the board, asking for inputs, etc.



Lab 1: Coinstrip
Similar game to Nim:

● Players take turns moving coins
● Player who can't move loses
● Rules are slightly more interesting
● Representing the game state gives more design flexibility/choice

Demo!


