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Administrative Details

Class roster: Who’s here!?

* And who's trying to get in (there’s room!)?
Handouts: syllabus, honor code, textbook
_ecture location: Schow 030B

Lab: Wed 12-2pm or 2-4pm

_ab location: TCL 217a & 216

Lab entry code: 0-1-2-4-8-16 (memorize now!)

Course Webpage (updated regularly...):
http://cs.williams.edu/~cs 136



http://cs.williams.edu/~cs136

Announcements

e Colloquium Today: Department Research
* Professors will be presenting their research topics
* Good chance to see what we do, and...

* Helps you decide if you want to do summer
research!

* Cognitive Science candidate talk on Monday,
Schow 030A @4pm

* Joanna Morris: “How we Read Complex Words”



Today s Outline

e Course Preview

e Course Bureaucracy

* Java (re)fresher—Hello World(s)



Why Take CS136!?

e To learn about:

e Data Structures
e Effective ways to store and manipulate data

* Advanced Programming

* Use structures and techniques to write programs that
solve interesting and important problems

e Basics of Algorithm Analysis
* Measuring algorithm complexity
e Determining algorithm correctness



Course Goals

|dentify basic data structures
* list, stack, array, tree, graph, hash table, and more

Implement these structures in Java

Learn how to evaluate and visualize data structures

e Different representations of the data

e Different algorithms for manipulating/accessing/storing data
e E.g, linked lists and arrays both represent lists of items

Learn how to design larger programs that are easier to
modify, extend, and debug

H2 e fun!



Common Themes

|. ldentify data for a problem
2. ldentify questions to answer about data

3. Design data structures and algorithms to answer
questions correctly and efficiently (Note: not all
correct solutions are efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks
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Finding Shortest Paths

What is “the data’?

* Road segments: Source, destination, length (weight)

What is the “question™?

* Given source and destination, compute the shortest path
from source

What is the algorithm? Dijkstra’s Algorithm

What are the data structures? (spoiler alert!)
* Graph: holds the road network in some useful form
* Priority Queue: holds not-yet-inspected edges

* Also uses: Lists, arrays, stacks, ...

A quick demo....



Course Outline

Java overview

Core data structures

e Vectors (extensible arrays), lists, queues, stacks
Advanced data structures

* Trees, heaps, graphs, hashtables

Foundations (throughout semester)

* Vocabulary

* Analysis tools

e Recursion & Induction
* Methodology



Syllabus Highlights

* How to contact us

 Bill Jannen (TCL 306)
e Office hours: M: |1-2pm, F: 4-5pm, and by appointment

* mailto:jannen@cs.williams.edu

e Dan Barowy (TCL 307)
e Office hours: M: 4-5pm, F: 4-5pm, and by appointment

e mailto:dbarowy@cs.williams.edu

* Piazza — Please, please, PLEASE post your questions

e Textbook

 Java Structures: Data Structures in Java for the Principled
Programmer, V7 Edition (by Duane Bailey)

e Take one: You're already paying for it!
* Weekly labs and quizzes, mid-term & final exam....


mailto:wlenhart@williams.edu
mailto:jpark@cs.williams.edu

Syllabus Highlights

e Quizzes
* Monday: ungraded quiz on textbook material
* Friday: graded quiz (twist on Monday’s material)

e Labs

e Every Wednesday
e Due Mondays at 8pm
e Deadline is firm, but...

e Resubmissions
e 2 per semester

e Can earn back up to 50% of missed points
e See syllabus for format & restrictions



Syllabus Highlights

Code review

* Labs graded on correctness, design, and style
e But it is sometimes hard to intuit good design and style

Lida has dedicated slots for code review

e All you must do is attend and discuss: not graded twice for your code

e Must sign up for one slot during the semester

* Earlier is probably more helpful, later probably more substantive
discussion...

If slots don’t fill in a given week, we may reach out to you: don’t

read into it!

e 60 students means we need to fill the slots if we want to get to
everyone...



Honor Code and Ethics

College Honor Code and Computer Ethics
guidelines can be found here:

* https://sites.williams.edu/honor-system/

 https://oit.williams.edu/policies/ethics/

You should also know the CS Department
computer usage policy.

* https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

* If you are not familiar with these items, please
review them.

Review the handout and individual lab details

We take these things very seriously...
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Your Responsibilities

Come to lab and lecture on time

Read assigned material before class and lab
* Bring textbook to lab (or be prepared to use PDF)
e Bring paper/pen(cil) to lab for brain-storming, ... PPP

Come to lab prepared
* Bring design docs for program
* | Prof + ITA == help for you: take advantage of this

Do NOT accept prolonged confusion! Ask questions
Your work should be your own. Unsure? Ask!
Participate: discussion, Piazza, office hours, etc.



Accounts and Passwords

Before the first lab

* Login to your CS Mac Lab account (different than OIT!!!)
* If you don’t have an account, see Mary or Lida

* If you forgot your password, see Mary or Lida

Mary and Lida manage our systems.

* Mary’s office is in the 3" floor CS lab (TCL 312)
e Lida’s office is TCL 205

Get this sorted out before lab on Wednesday!
e “Office hours” Lida: 2/7 3:30-4:15pm, Mary: 2/10 2-4pm

Complete Pre-lab: Step 0 by Monday 4pm
Complete “Getting to know each other” survey
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Why Java?

* There are lots of programming languages...

C, LISP, C++, Java, C#, Python

e Java was designed in 1990s to support Internet
programming
* Why Java!

It’s easier (than predecessors like C++) to write correct
programs

Object-oriented — good for large systems

Good support for abstraction, extension, modularization
Automatically handles low-level memory management
Very portable



Why Not Blue)?

e |Learn to use Unix
e Command-line tools
e Emacs: a standard Unix-based editor

e Atom: a customizable featureful text editor

* Emphasis will move from user interface
programming to data structures and efficient

algorithm design

e Take advantage of opportunity to become
Unix-savvy!



Java Crash Course



Simple Sample Programs

* Hello.java

* Write a program that prints “Hello” to the
terminal.

e Now let’s run it.

e Of Note:

e public static void main(String[] args){...}
e System.out is of type PrintStream
* javac and java commands

* Terminal.app
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Sample Programs

* SumO-5.java
* Programs that adds two integers

e Of Note:

System.in is of type ReadStream

Scanner class provides parsing of text streams (terminal
input, files, Strings, etc)

args[] is passed to main from the OS environment
e args[] contains command-line arguments held as Strings

Integer.valueOA(...) converts String to int

Static values/methods: in, out, valueOf, main
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Java Reference Materials!

Please see Bailey Appendix B for a good Java Reference.
The following slides show some examples as a “refresher’
but are not intended to be exhaustive--:
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Java Review (See Appendix B)

* Variable types
* Primitive: int, double, boolean, ...
e Object (class-based): String (special), Point, Jbutton, ...
e Arrays
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Java Review (See Appendix B)

e Statements
e int x; // declare variable x
e int x = 3; // declare & initialize x
e X =X + 1;
* X++;

e 1f (x> 3) { .. } else { ..}

e while (x < 2) { .. }

e for (int 1 0; i < x; i++) { .. }
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Java Review (See Appendix B)

e Comments

e // this is a single-line comment
e /* this can span multiple lines */

* Aside: good comments make code readable
* Explain the “why” not the “what”
* State assumptions or non-obvious logic
return x+1; // returns sum of x+1

while (y < 2) /* continue as long
* as y 1s < 2

*/

25



Primitive Types

Provide numeric, character, and logical values
e |1,-23,4.21, ‘c, false

Can be associated with a name (variable)
Variables must be declared before use

int age; // A simple integer value

float speed; // A number with a ‘decimal’ part
char grade; // A single character

bool loggedIn; // Either true or false

Variables can be initialized when declared

int age = 21;
float speed = 47.25;
char grade = ‘A’;
bool loggedIn = true;
26



Array Types

Holds a collection of values of some type
Can be of any type

int[] ages; // An array of integeras
float[] speeds; // An array of floats
char[] grades; // An array of characters

bool[] loggedIn; // Either true or false

Arrays can be initialized when declared
int[] ages = { 21, 20, 19, 19, 20 };
float[] speeds = { 47.25, 3.4, -2.13, 0.0 };
{ ‘A", 'B'", ‘'c¢', 'C" };
= { true, true, false, true };

char[] grades
bool[] loggedIn

Or just created with a standard default value
int[] ages = new int[15]; // array of 15 O0Os



“Everything is a class”

e Typically put the code for each class in a file with
the same name as the class

e The Person class’ code would be in Person. java
* The method "main’ is the entry point to a Java
program

* main has a specific method signature:

public static void main(String[] args)

* |In grand CS tradition, we will write and run
Hello. java

28



Operators

Java provides a number of built-in operators

including
*Arithmetic operators: +, -, *, /, %
*Relational operators: ==, !=, <, S¢ >¢ 2

*Logical operators &&, || (don’t use &, |)

*Assignment operators =, +=, -=, *= /=

Common unary operators include
*Arithmetic: -, ++, -- (prefix and postfix)

*Logical: ! (not)

29



Operator Precedence in Java

Operators Precedence
postfix expr++ expr--
unary ++expr --expr +expr -expr ~ |
multiplicative /%
additive + -
shift << >> >>>
relational < > <= >= 1instanceof
equality == I=
bitwise AND &
bitwise exclusive OR | A
bitwise inclusive OR | |
logical AND &&
logical OR I
ternary ?

assignment

= 4= -= *¥= /= %= &= A= |= <<= >>= >>>=

30



Operator Gotchas!

There is no exponentiation operator in Java.

* The symbol " is the bitwise or operator in Java.

The remainder operator % is the same as the
mathematical 'mod' function for positive arguments,

* For negative arguments it is not: -8 % 3 = -2

The logical operators && and || use short-circuit
evaluation:

* Once the value of the logical expression can be
determined, no further evaluation takes place.

e Eg.:lfn=0, then (n!= 0 && (k/n > 3), will yield false
without evaluating k/n. Very useful!
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Expressions

Computations described by applying operators to
other values (variables, literals, values returned from
method calls)

* An expression returns a value

e 3+2*5 - 7/4 // returns 12

* X + y*z — q/w

e (- b + Math.sgrt(b*b — 4 * a * ¢c) )/( 2* a)

e (n>0) & (k / n > 2) // computes a boolean
* Assignment expression: x = 3; // returns 3

e Soy=4*(x=3)setsx=3andy = 12 (and returns 12)

Boolean expressions let us control program flow

of execution when combined with control

structures 32



Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors

* Looping structures: while, do/while, for

e Repeatedly execute same statement (block)

* Branching structures: if, if/else, switch
* Select one of several possible statements (blocks)

* Special: break/continue: exit a looping structure
* break: exits loop completely

e continue: proceeds to next iteration of loop
33



while & do-while

Compare this...

Random rng

= new Random();

int flip = rng.nextInt(2), count = 0;

while (flip == 0) { // count flips until “heads”
count++;
flip = rng.nextInt(2);

}

...to this

int flip, count = 0;

do {

// count flips until “heads”

count++;

flip

= rng.nextInt(2);

} while (flip == 0) ;
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For & for-each

Here's a typical for loop example

int[] grades = { 100, 78, 92, 87,
int sum = 0;
for( int 1 = 0; 1 < grades.length;

grades[i];

This for construct is equivalent to
int 1 = 0;
while ( 1 < grades.length ) {
sum += grades[i];
i++;
}
Can also write

for (int g : grades ) sum += g;
// called for-each construct

89, 90 };

i++ ) sum +=

35



Loop Construct Notes

The body of a while loop may not ever be executed

The body of a do — while loop always executes at
least once

For loops are typically used when number of
iterations desired is known in advance. E.g.
e Execute loop exactly 100 times

e Execute loop for each element of an array

The for=-each construct is often used to access
array (and other collection type) values when no
updating of the array is required

* We'll explore this construct more later in the course
36



If/else

if (x > 0) // There is exactly 1 "if" clause
vy =1/ x;

else if (x<0) { // 0 or more "else if" clauses
X = = X;
vy =1/ x;

}

else // at most 1 "else" clause

System.out.println(“Can’t divide by 0!");

The single statement can be replaced by a block: any
sequence of statements enclosed in {}
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switch

Example: Encode clubs, diamonds, hearts, spades as O, |, 2, 3

switch (x) {
case 0: case
System
break;
case 1l: case

System
black");
break;
default:
System
code!");

break;

2:

.out.println("Your card is red");

3:

.out.println("Your card is

.out.println("Illegal suit

38



Break & Continue

Find first prime > 100
for( int i = 101; ; i++ )
1if ( isPrime(i) ) {
System.out.println( 1 );
break;

Print primes < 100
for( int i = 1; i < 100 ; i++ ) {
if ( !isPrime(1i) )
continue;

System.out.println( 1 );
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Summary

Basic Java elements so far

*Primitive and array types

*Variable declaration and assignment
*Operators & operator precedence
*Expressions

*Control structures
* Branching: if — else, switch, break, continue

* Looping: while, do — while, for, for — each

*Edit (emacs), compile (javac), run (java) cycle
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