CSCI 136
Data Structures &
Advanced Programming

Spring 2020

Bill J]annen & Dan Barowy

Administrative Details

Class roster: Who’s here!?

* And who's trying to get in (there’s room!)?
Handouts: syllabus, honor code, textbook
_ecture location: Schow 030B

Lab: Wed 12-2pm or 2-4pm

_ab location: TCL 217a & 216

Lab entry code: 0-1-2-4-8-16 (memorize now!)

Course Webpage (updated regularly...):
http://cs.williams.edu/~cs 136

http://cs.williams.edu/~cs136

Announcements

e Colloquium Today: Department Research
* Professors will be presenting their research topics
* Good chance to see what we do, and...

* Helps you decide if you want to do summer
research!

* Cognitive Science candidate talk on Monday,
Schow 030A @4pm

* Joanna Morris: “How we Read Complex Words”

Today s Outline

e Course Preview

e Course Bureaucracy

* Java (re)fresher—Hello World(s)

Why Take CS136!?

e To learn about:

e Data Structures
e Effective ways to store and manipulate data

* Advanced Programming

* Use structures and techniques to write programs that
solve interesting and important problems

e Basics of Algorithm Analysis
* Measuring algorithm complexity
e Determining algorithm correctness

Course Goals

|dentify basic data structures
* list, stack, array, tree, graph, hash table, and more

Implement these structures in Java

Learn how to evaluate and visualize data structures

e Different representations of the data

e Different algorithms for manipulating/accessing/storing data
e E.g, linked lists and arrays both represent lists of items

Learn how to design larger programs that are easier to
modify, extend, and debug

H2 e fun!

Common Themes

|. ldentify data for a problem
2. ldentify questions to answer about data

3. Design data structures and algorithms to answer
questions correctly and efficiently (Note: not all
correct solutions are efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks

Ll

oy

Miles
(thousand)
~BEFER

National Highway
System (NHS)
roadways are
important to the
economy, defense,
and mobility. The NHS
includes all Interstate
highways (arterials),
the Strategic Highway
Network (defense
purpose), intermodal
connectors (roads
connecting to major
intermodal facilities),

_ and other principal
= Interstate Highways arterials. The NHS

— Othar NHE Roads includes over 163,000
miles of highways.

- = W -

Hural interstate Urban Interstale Hural Others Urban Others
Note: Roadway mileage from 2008 data

Finding Shortest Paths

What is “the data’?

* Road segments: Source, destination, length (weight)

What is the “question™?

* Given source and destination, compute the shortest path
from source

What is the algorithm? Dijkstra’s Algorithm

What are the data structures? (spoiler alert!)
* Graph: holds the road network in some useful form
* Priority Queue: holds not-yet-inspected edges

* Also uses: Lists, arrays, stacks, ...

A quick demo....

Course Outline

Java overview

Core data structures

e Vectors (extensible arrays), lists, queues, stacks
Advanced data structures

* Trees, heaps, graphs, hashtables

Foundations (throughout semester)

* Vocabulary

* Analysis tools

e Recursion & Induction
* Methodology

Syllabus Highlights

* How to contact us

 Bill Jannen (TCL 306)
e Office hours: M: |1-2pm, F: 4-5pm, and by appointment

* mailto:jannen@cs.williams.edu

e Dan Barowy (TCL 307)
e Office hours: M: 4-5pm, F: 4-5pm, and by appointment

e mailto:dbarowy@cs.williams.edu

* Piazza — Please, please, PLEASE post your questions

e Textbook

 Java Structures: Data Structures in Java for the Principled
Programmer, V7 Edition (by Duane Bailey)

e Take one: You're already paying for it!
* Weekly labs and quizzes, mid-term & final exam....

mailto:wlenhart@williams.edu
mailto:jpark@cs.williams.edu

Syllabus Highlights

e Quizzes
* Monday: ungraded quiz on textbook material
* Friday: graded quiz (twist on Monday’s material)

e Labs

e Every Wednesday
e Due Mondays at 8pm
e Deadline is firm, but...

e Resubmissions
e 2 per semester

e Can earn back up to 50% of missed points
e See syllabus for format & restrictions

Syllabus Highlights

Code review

* Labs graded on correctness, design, and style
e But it is sometimes hard to intuit good design and style

Lida has dedicated slots for code review

e All you must do is attend and discuss: not graded twice for your code

e Must sign up for one slot during the semester

* Earlier is probably more helpful, later probably more substantive
discussion...

If slots don’t fill in a given week, we may reach out to you: don’t

read into it!

e 60 students means we need to fill the slots if we want to get to
everyone...

Honor Code and Ethics

College Honor Code and Computer Ethics
guidelines can be found here:

* https://sites.williams.edu/honor-system/

 https://oit.williams.edu/policies/ethics/

You should also know the CS Department
computer usage policy.

* https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

* If you are not familiar with these items, please
review them.

Review the handout and individual lab details

We take these things very seriously...

14

http://sites.williams.edu/honor-system/
http://oit.williams.edu/policies/ethics/
https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

Your Responsibilities

Come to lab and lecture on time

Read assigned material before class and lab
* Bring textbook to lab (or be prepared to use PDF)
e Bring paper/pen(cil) to lab for brain-storming, ... PPP

Come to lab prepared
* Bring design docs for program
* | Prof + ITA == help for you: take advantage of this

Do NOT accept prolonged confusion! Ask questions
Your work should be your own. Unsure? Ask!
Participate: discussion, Piazza, office hours, etc.

Accounts and Passwords

Before the first lab

* Login to your CS Mac Lab account (different than OIT!!!)
* If you don’t have an account, see Mary or Lida

* If you forgot your password, see Mary or Lida

Mary and Lida manage our systems.

* Mary’s office is in the 3" floor CS lab (TCL 312)
e Lida’s office is TCL 205

Get this sorted out before lab on Wednesday!
e “Office hours” Lida: 2/7 3:30-4:15pm, Mary: 2/10 2-4pm

Complete Pre-lab: Step 0 by Monday 4pm
Complete “Getting to know each other” survey

16

Why Java?

* There are lots of programming languages...

C, LISP, C++, Java, C#, Python

e Java was designed in 1990s to support Internet
programming
* Why Java!

It’s easier (than predecessors like C++) to write correct
programs

Object-oriented — good for large systems

Good support for abstraction, extension, modularization
Automatically handles low-level memory management
Very portable

Why Not Blue)?

e |Learn to use Unix
e Command-line tools
e Emacs: a standard Unix-based editor

e Atom: a customizable featureful text editor

* Emphasis will move from user interface
programming to data structures and efficient

algorithm design

e Take advantage of opportunity to become
Unix-savvy!

Java Crash Course

Simple Sample Programs

* Hello.java

* Write a program that prints “Hello” to the
terminal.

e Now let’s run it.

e Of Note:

e public static void main(String[] args){...}
e System.out is of type PrintStream
* javac and java commands

* Terminal.app

20

Sample Programs

* SumO-5.java
* Programs that adds two integers

e Of Note:

System.in is of type ReadStream

Scanner class provides parsing of text streams (terminal
input, files, Strings, etc)

args[] is passed to main from the OS environment
e args[] contains command-line arguments held as Strings

Integer.valueOA(...) converts String to int

Static values/methods: in, out, valueOf, main

21

Java Reference Materials!

Please see Bailey Appendix B for a good Java Reference.
The following slides show some examples as a “refresher’
but are not intended to be exhaustive--:

22

Java Review (See Appendix B)

* Variable types
* Primitive: int, double, boolean, ...
e Object (class-based): String (special), Point, Jbutton, ...
e Arrays

23

Java Review (See Appendix B)

e Statements
e int x; // declare variable x
e int x = 3; // declare & initialize x
e X =X + 1;
* X++;

e 1f (x> 3) { .. } else { ..}

e while (x < 2) { .. }

e for (int 1 0; i < x; i++) { .. }

24

Java Review (See Appendix B)

e Comments

e // this is a single-line comment
e /* this can span multiple lines */

* Aside: good comments make code readable
* Explain the “why” not the “what”
* State assumptions or non-obvious logic
return x+1; // returns sum of x+1

while (y < 2) /* continue as long
* as y 1s < 2

*/

25

Primitive Types

Provide numeric, character, and logical values
e |1,-23,4.21, ‘c, false

Can be associated with a name (variable)
Variables must be declared before use

int age; // A simple integer value

float speed; // A number with a ‘decimal’ part
char grade; // A single character

bool loggedIn; // Either true or false

Variables can be initialized when declared

int age = 21;
float speed = 47.25;
char grade = ‘A’;
bool loggedIn = true;
26

Array Types

Holds a collection of values of some type
Can be of any type

int[] ages; // An array of integeras
float[] speeds; // An array of floats
char[] grades; // An array of characters

bool[] loggedIn; // Either true or false

Arrays can be initialized when declared
int[] ages = { 21, 20, 19, 19, 20 };
float[] speeds = { 47.25, 3.4, -2.13, 0.0 };
{ ‘A", 'B'", ‘'c¢', 'C" };
= { true, true, false, true };

char[] grades
bool[] loggedIn

Or just created with a standard default value
int[] ages = new int[15]; // array of 15 O0Os

“Everything is a class”

e Typically put the code for each class in a file with
the same name as the class

e The Person class’ code would be in Person. java
* The method "main’ is the entry point to a Java
program

* main has a specific method signature:

public static void main(String[] args)

* |In grand CS tradition, we will write and run
Hello. java

28

Operators

Java provides a number of built-in operators

including
*Arithmetic operators: +, -, *, /, %
*Relational operators: ==, !=, <, S¢ >¢ 2

*Logical operators &&, || (don’t use &, |)

*Assignment operators =, +=, -=, *= /=

Common unary operators include
*Arithmetic: -, ++, -- (prefix and postfix)

*Logical: ! (not)

29

Operator Precedence in Java

Operators Precedence
postfix expr++ expr--
unary ++expr --expr +expr -expr ~ |
multiplicative /%
additive + -
shift << >> >>>
relational < > <= >= 1instanceof
equality == I=
bitwise AND &
bitwise exclusive OR | A
bitwise inclusive OR | |
logical AND &&
logical OR I
ternary ?

assignment

= 4= -= *¥= /= %= &= A= |= <<= >>= >>>=

30

Operator Gotchas!

There is no exponentiation operator in Java.

* The symbol " is the bitwise or operator in Java.

The remainder operator % is the same as the
mathematical 'mod' function for positive arguments,

* For negative arguments it is not: -8 % 3 = -2

The logical operators && and || use short-circuit
evaluation:

* Once the value of the logical expression can be
determined, no further evaluation takes place.

e Eg.:lfn=0, then (n!= 0 && (k/n > 3), will yield false
without evaluating k/n. Very useful!

31

Expressions

Computations described by applying operators to
other values (variables, literals, values returned from
method calls)

* An expression returns a value

e 3+2*5 - 7/4 // returns 12

* X + y*z — q/w

e (- b + Math.sgrt(b*b — 4 * a * ¢c))/(2* a)

e (n>0) & (k / n > 2) // computes a boolean
* Assignment expression: x = 3; // returns 3

e Soy=4*(x=3)setsx=3andy = 12 (and returns 12)

Boolean expressions let us control program flow

of execution when combined with control

structures 32

Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors

* Looping structures: while, do/while, for

e Repeatedly execute same statement (block)

* Branching structures: if, if/else, switch
* Select one of several possible statements (blocks)

* Special: break/continue: exit a looping structure
* break: exits loop completely

e continue: proceeds to next iteration of loop
33

while & do-while

Compare this...

Random rng

= new Random();

int flip = rng.nextInt(2), count = 0;

while (flip == 0) { // count flips until “heads”
count++;
flip = rng.nextInt(2);

}

...to this

int flip, count = 0;

do {

// count flips until “heads”

count++;

flip

= rng.nextInt(2);

} while (flip == 0) ;

34

For & for-each

Here's a typical for loop example

int[] grades = { 100, 78, 92, 87,
int sum = 0;
for(int 1 = 0; 1 < grades.length;

grades[i];

This for construct is equivalent to
int 1 = 0;
while (1 < grades.length) {
sum += grades[i];
i++;
}
Can also write

for (int g : grades) sum += g;
// called for-each construct

89, 90 };

i++) sum +=

35

Loop Construct Notes

The body of a while loop may not ever be executed

The body of a do — while loop always executes at
least once

For loops are typically used when number of
iterations desired is known in advance. E.g.
e Execute loop exactly 100 times

e Execute loop for each element of an array

The for=-each construct is often used to access
array (and other collection type) values when no
updating of the array is required

* We'll explore this construct more later in the course
36

If/else

if (x > 0) // There is exactly 1 "if" clause
vy =1/ x;

else if (x<0) { // 0 or more "else if" clauses
X = = X;
vy =1/ x;

}

else // at most 1 "else" clause

System.out.println(“Can’t divide by 0!");

The single statement can be replaced by a block: any
sequence of statements enclosed in {}

37

switch

Example: Encode clubs, diamonds, hearts, spades as O, |, 2, 3

switch (x) {
case 0: case
System
break;
case 1l: case

System
black");
break;
default:
System
code!");

break;

2:

.out.println("Your card is red");

3:

.out.println("Your card is

.out.println("Illegal suit

38

Break & Continue

Find first prime > 100
for(int i = 101; ; i++)
1if (isPrime(i)) {
System.out.println(1);
break;

Print primes < 100
for(int i = 1; i < 100 ; i++) {
if (!isPrime(1i))
continue;

System.out.println(1);

39

Summary

Basic Java elements so far

*Primitive and array types

*Variable declaration and assignment
*Operators & operator precedence
*Expressions

*Control structures
* Branching: if — else, switch, break, continue

* Looping: while, do — while, for, for — each

*Edit (emacs), compile (javac), run (java) cycle

40

