
CSCI 136
Data Structures &

Advanced Programming

Spring 2020
Bill Jannen & Dan Barowy

2

Administrative Details

• Class roster: Who’s here?
• And who’s trying to get in (there’s room!)?

• Handouts: syllabus, honor code, textbook
• Lecture location: Schow 030B

• Lab: Wed 12-2pm or 2-4pm
• Lab location: TCL 217a & 216
• Lab entry code: 0-1-2-4-8-16 (memorize now!)
• Course Webpage (updated regularly…):

http://cs.williams.edu/~cs136

http://cs.williams.edu/~cs136

Announcements

• Colloquium Today: Department Research
• Professors will be presenting their research topics
• Good chance to see what we do, and…
• Helps you decide if you want to do summer

research!

• Cognitive Science candidate talk on Monday,
Schow 030A @4pm
• Joanna Morris: “How we Read Complex Words”

3

4

Today’s Outline

• Course Preview

• Course Bureaucracy

• Java (re)fresher–Hello World(s)

5

Why Take CS136?

• To learn about:
• Data Structures

• Effective ways to store and manipulate data

• Advanced Programming
• Use structures and techniques to write programs that

solve interesting and important problems

• Basics of Algorithm Analysis
• Measuring algorithm complexity
• Determining algorithm correctness

6

Course Goals
• Identify basic data structures

• list, stack, array, tree, graph, hash table, and more

• Implement these structures in Java
• Learn how to evaluate and visualize data structures

• Different representations of the data
• Different algorithms for manipulating/accessing/storing data
• E.g., linked lists and arrays both represent lists of items

• Learn how to design larger programs that are easier to
modify, extend, and debug

• Have fun!

7

Common Themes

1. Identify data for a problem

2. Identify questions to answer about data
3. Design data structures and algorithms to answer

questions correctly and efficiently (Note: not all
correct solutions are efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks

8

9

Finding Shortest Paths

• What is “the data”?
• Road segments: Source, destination, length (weight)

• What is the “question”?
• Given source and destination, compute the shortest path

from source

• What is the algorithm? Dijkstra’s Algorithm
• What are the data structures? (spoiler alert!)
• Graph: holds the road network in some useful form
• Priority Queue: holds not-yet-inspected edges
• Also uses: Lists, arrays, stacks, ...

• A quick demo….

10

Course Outline

• Java overview
• Core data structures

• Vectors (extensible arrays), lists, queues, stacks

• Advanced data structures
• Trees, heaps, graphs, hashtables

• Foundations (throughout semester)
• Vocabulary
• Analysis tools
• Recursion & Induction
• Methodology

11

Syllabus Highlights

• How to contact us
• Bill Jannen (TCL 306)

• Office hours: M: 1-2pm, F: 4-5pm, and by appointment
• mailto:jannen@cs.williams.edu

• Dan Barowy (TCL 307)
• Office hours: M: 4-5pm, F: 4-5pm, and by appointment
• mailto:dbarowy@cs.williams.edu

• Piazza – Please, please, PLEASE post your questions

• Textbook
• Java Structures: Data Structures in Java for the Principled

Programmer, Ö7 Edition (by Duane Bailey)
• Take one: You’re already paying for it!

• Weekly labs and quizzes, mid-term & final exam....

mailto:wlenhart@williams.edu
mailto:jpark@cs.williams.edu

12

Syllabus Highlights

• Quizzes
• Monday: ungraded quiz on textbook material
• Friday: graded quiz (twist on Monday’s material)

• Labs
• Every Wednesday
• Due Mondays at 8pm
• Deadline is firm, but…

• Resubmissions
• 2 per semester
• Can earn back up to 50% of missed points
• See syllabus for format & restrictions

13

Syllabus Highlights

• Code review
• Labs graded on correctness, design, and style
• But it is sometimes hard to intuit good design and style

• Lida has dedicated slots for code review
• All you must do is attend and discuss: not graded twice for your code
• Must sign up for one slot during the semester
• Earlier is probably more helpful, later probably more substantive

discussion…

• If slots don’t fill in a given week, we may reach out to you: don’t
read into it!
• 60 students means we need to fill the slots if we want to get to

everyone…

14

Honor Code and Ethics

• College Honor Code and Computer Ethics
guidelines can be found here:
• https://sites.williams.edu/honor-system/
• https://oit.williams.edu/policies/ethics/

• You should also know the CS Department
computer usage policy.
• https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

• If you are not familiar with these items, please
review them.

• Review the handout and individual lab details
• We take these things very seriously…

http://sites.williams.edu/honor-system/
http://oit.williams.edu/policies/ethics/
https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

15

Your Responsibilities

• Come to lab and lecture on time
• Read assigned material before class and lab

• Bring textbook to lab (or be prepared to use PDF)
• Bring paper/pen(cil) to lab for brain-storming, … PPP

• Come to lab prepared
• Bring design docs for program
• 1 Prof + 1TA == help for you: take advantage of this

• Do NOT accept prolonged confusion! Ask questions
• Your work should be your own. Unsure? Ask!
• Participate: discussion, Piazza, office hours, etc.

16

Accounts and Passwords

• Before the first lab
• Login to your CS Mac Lab account (different than OIT!!!)
• If you don’t have an account, see Mary or Lida
• If you forgot your password, see Mary or Lida

• Mary and Lida manage our systems.
• Mary’s office is in the 3rd floor CS lab (TCL 312)
• Lida’s office is TCL 205

• Get this sorted out before lab on Wednesday!
• “Office hours” Lida: 2/7 3:30-4:15pm, Mary: 2/10 2-4pm

• Complete Pre-lab: Step 0 by Monday 4pm
• Complete “Getting to know each other” survey

17

Why Java?

• There are lots of programming languages…
• C, LISP, C++, Java, C#, Python

• Java was designed in 1990s to support Internet
programming

• Why Java?
• It’s easier (than predecessors like C++) to write correct

programs
• Object-oriented – good for large systems
• Good support for abstraction, extension, modularization
• Automatically handles low-level memory management
• Very portable

18

Why Not BlueJ?

• Learn to use Unix
• Command-line tools
• Emacs: a standard Unix-based editor
• Atom: a customizable featureful text editor

• Emphasis will move from user interface
programming to data structures and efficient
algorithm design

• Take advantage of opportunity to become
Unix-savvy!

19

Java Crash Course

20

Simple Sample Programs

• Hello.java
• Write a program that prints “Hello” to the

terminal.
• Now let’s run it.

• Of Note:
• public static void main(String[] args){...}

• System.out is of type PrintStream

• javac and java commands
• Terminal.app

21

Sample Programs

• Sum0-5.java
• Programs that adds two integers

• Of Note:
• System.in is of type ReadStream
• Scanner class provides parsing of text streams (terminal

input, files, Strings, etc)
• args[] is passed to main from the OS environment

• args[] contains command-line arguments held as Strings

• Integer.valueOf(...) converts String to int
• Static values/methods: in, out, valueOf, main

Java Reference Materials!

22

Please see Bailey Appendix B for a good Java Reference.
The following slides show some examples as a “refresher”
but are not intended to be exhaustive…

23

Java Review (See Appendix B)

• Variable types
• Primitive: int, double, boolean, ...
• Object (class-based): String (special), Point, Jbutton, ...
• Arrays

24

Java Review (See Appendix B)

• Statements
• int x; // declare variable x
• int x = 3; // declare & initialize x
• x = x + 1;
• x++;

• if (x > 3) { … } else { … }

• while (x < 2) { … }

• for (int i = 0; i < x; i++) { … }

25

Java Review (See Appendix B)
• Comments

• // this is a single-line comment
• /* this can span multiple lines */

• Aside: good comments make code readable
• Explain the “why” not the “what”
• State assumptions or non-obvious logic
return x+1; // returns sum of x+1
while (y < 2) /* continue as long

* as y is < 2
*/

26

Primitive Types
• Provide numeric, character, and logical values

• 11, -23, 4.21, ‘c’, false

• Can be associated with a name (variable)
• Variables must be declared before use

int age; // A simple integer value
float speed; // A number with a ‘decimal’ part
char grade; // A single character
bool loggedIn; // Either true or false

• Variables can be initialized when declared
int age = 21;
float speed = 47.25;
char grade = ‘A’;
bool loggedIn = true;

27

Array Types
• Holds a collection of values of some type
• Can be of any type

int[] ages; // An array of integeras
float[] speeds; // An array of floats
char[] grades; // An array of characters
bool[] loggedIn; // Either true or false

• Arrays can be initialized when declared
int[] ages = { 21, 20, 19, 19, 20 };
float[] speeds = { 47.25, 3.4, -2.13, 0.0 };
char[] grades = { ‘A’, ‘B’, ‘c’, ‘C’ };
bool[] loggedIn = { true, true, false, true };

• Or just created with a standard default value
int[] ages = new int[15]; // array of 15 0s

“Everything is a class”

• Typically put the code for each class in a file with
the same name as the class
• The Person class’ code would be in Person.java

• The method ’main’ is the entry point to a Java
program
• main has a specific method signature:

public static void main(String[] args)

• In grand CS tradition, we will write and run
Hello.java

28

Operators

Java provides a number of built-in operators
including
•Arithmetic operators: +, -, *, /, %
•Relational operators: ==, !=, <, ≤, >, ≥
•Logical operators &&, || (don’t use &, |)
•Assignment operators =, +=, -=, *=, /=, ...

Common unary operators include
•Arithmetic: -, ++, -- (prefix and postfix)
•Logical: ! (not)

29

Operator Precedence in Java

30

Operator Gotchas!
• There is no exponentiation operator in Java.

• The symbol ^ is the bitwise or operator in Java.

• The remainder operator % is the same as the
mathematical 'mod' function for positive arguments,
• For negative arguments it is not: -8 % 3 = -2

• The logical operators && and || use short-circuit
evaluation:
• Once the value of the logical expression can be

determined, no further evaluation takes place.
• E.g.: If n = 0, then (n != 0 && (k/n > 3), will yield false

without evaluating k/n. Very useful!
31

Expressions
Computations described by applying operators to
other values (variables, literals, values returned from
method calls)

• An expression returns a value
• 3+2*5 - 7/4 // returns 12
• x + y*z – q/w
• (- b + Math.sqrt(b*b – 4 * a * c))/(2* a)
• (n > 0) && (k / n > 2) // computes a boolean

• Assignment expression: x = 3; // returns 3
• So y = 4 * (x = 3) sets x = 3 and y = 12 (and returns 12)

Boolean expressions let us control program flow
of execution when combined with control
structures 32

Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors
• Looping structures: while, do/while, for
• Repeatedly execute same statement (block)

• Branching structures: if, if/else, switch
• Select one of several possible statements (blocks)

• Special: break/continue: exit a looping structure
• break: exits loop completely
• continue: proceeds to next iteration of loop

33

while & do-while
Compare this...
Random rng = new Random();
int flip = rng.nextInt(2), count = 0;
while (flip == 0) { // count flips until “heads”

count++;
flip = rng.nextInt(2);

}

...to this
int flip, count = 0;
do { // count flips until “heads”

count++;
flip = rng.nextInt(2);

} while (flip == 0) ;
34

For & for-each
Here’s a typical for loop example

int[] grades = { 100, 78, 92, 87, 89, 90 };
int sum = 0;
for(int i = 0; i < grades.length; i++) sum +=
grades[i];

This for construct is equivalent to
int i = 0;
while (i < grades.length) {

sum += grades[i];
i++;

}

Can also write
for (int g : grades) sum += g;
// called for-each construct 35

Loop Construct Notes
• The body of a while loop may not ever be executed
• The body of a do – while loop always executes at

least once
• For loops are typically used when number of

iterations desired is known in advance. E.g.
• Execute loop exactly 100 times
• Execute loop for each element of an array

• The for-each construct is often used to access
array (and other collection type) values when no
updating of the array is required
• We’ll explore this construct more later in the course

36

If/else

if (x > 0) // There is exactly 1 "if" clause
y = 1 / x;

else if (x<0) { // 0 or more "else if" clauses
x = - x;
y = 1 / x;

}
else // at most 1 "else" clause

System.out.println(“Can’t divide by 0!”);

The single statement can be replaced by a block: any
sequence of statements enclosed in {}

37

switch
Example: Encode clubs, diamonds, hearts, spades as 0, 1, 2, 3

switch (x) {
case 0: case 2:

System.out.println("Your card is red");
break;

case 1: case 3:
System.out.println("Your card is

black");
break;

default:
System.out.println("Illegal suit

code!");
break;

}
38

Break & Continue
Find first prime > 100

for(int i = 101; ; i++)
if (isPrime(i)) {

System.out.println(i);
break;

}

Print primes < 100
for(int i = 1; i < 100 ; i++) {

if (!isPrime(i))
continue;

System.out.println(i);
}

39

Summary

Basic Java elements so far
•Primitive and array types
•Variable declaration and assignment
•Operators & operator precedence
•Expressions
•Control structures
• Branching: if – else, switch, break, continue
• Looping: while, do – while, for, for – each

•Edit (emacs), compile (javac), run (java) cycle
40

