
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 33

Graphs, part 4

Announcements

Last date for resubmissions: May 19

Can’t accept after: grades due May 19!

Includes labs 5-9, all quizzes.

Lab 7 back today (already graded)

Hashtable activity solution post after
class

Outline

Double hashing formula

Shortest paths

Teaching evaluations

Life skill #12:
physical health = mental health

Life skill #13:
be the hero in your own education

How/where are hash codes used?

Hash function

ℎ(𝑘) = ℎ1(𝑘) 𝑚𝑜𝑑 |𝑇|

where k is the key, and |T| is the size of the array T.

h(k) relies on |T|. In what class should h(k) be defined?

We typically put h(k) in the hash table implementation.

Note that ℎ1(k) can be defined independently of T.

ℎ1(k) = key.hashCode()

Double hashing

ℎ(i, 𝑘) = (ℎ1(𝑘) + i ⋅ ℎ2(𝑘)) 𝑚𝑜𝑑 |𝑇|

where k is the key, i is the ith collision, and |T| is the size of

the array T.

Again, ℎ(i, 𝑘) should appear in the hash table implementation.

ℎ2(k) = toSHA1(keyToBytes(key))

ℎ1(k) = key.hashCode()

ℎ2(k) is a second hash function.

Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path
between two vertices in a graph such that the sum of the
weights of its constituent edges is minimized.

Applications Applications

Applications Applications

Applications Dijkstra’s algorithm

• I n v e n t e d b y Ed s g a r
Dijkstra in 1959.

• The original version used
a min-priority queue.

• Designed using pencil
and paper; algorithm was
intended to demonstrate
to non-technical people
how computers could be
useful.

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

Looking for path from A to F.

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

A 0
B 4
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

u

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

u

9 + 11

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Read backward from F and reverse.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

You learned a lot this semester!

(great job!)

Java Program design

Abstraction

inside outside

Composition

WordSeq

String[] sequence

int next

7

C
S
1
3
6

i
s

t
h
e

b
e
s
t

c
l
a
s
s

e
v
e
r

toStr
ing

sizeappend

remove

clear

Abstract machine

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

“Hello class!”String

reference

Recursion

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

fact
n = 0

Formal methods Induction

Program performance Big-O analysis

0

Algorithm design

of copies for doubling expansion:

+ + + … +

add()

1
up to

2nd
elem.

2
up to

4th

elem.

4
up to

8th
elem.

(n/2)
up to
nth

elem.

Neat theorem: 1 + 2 + 4 + … + 2k-1 = 2k-1

Suppose n = 2k.

Doubling expansion costs ≈ O(n)

Then 1 + … + n/2 = 1 + … + 2k/2

= 1 + … + 2k-1 = 2k-1 = n-1

Sorting algorithms

Exotic sorting algorithms

d digits

k
values

n
elements

Search algorithms

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

322 = 365? no

322 < 365? yes

Abstract data types (ADTs) Useful applications of ADTs

output input

operator stack

A B C

×

+

- D

Ordering structures

8727

71

20

17

91

14

Partially-ordering structures

0 1 2 3

Ordinary letter Blue letter

Number representations

Efficient encoding of structures

0 1 2 3 4 5 6 7

99 5 57 0 -7 56

left child right child

High-performance structures

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!
Dirk
20

6

Very general structures: graphs Graph algorithms

1
2

10

6
4

8

3
5

7

9

Recap & Next Class

Today we learned:

Next class:
Final exam review

Double hashing formula

Shortest paths
Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these forms.
Please take your time and write thoughtful responses.

I changed a number of parts of this course this
semester. Your feedback is very valuable to me, as it

will help me decide whether these changes were good.

Purpose of Blue Sheets

Student comments on the blue sheets […] are solely for your
benefit. They are not made available to department or
program chairs, the Dean of the Faculty, or the CAP for
evaluation purposes.

—Office of the Provost, Williams College

Purpose of SCS Forms

“[T]he SCS provides instructors with feedback regarding their
courses and teaching. The faculty legislation governing the
SCS provides that SCS results are made available to the
appropriate department chair, the Dean of the Faculty, and
at appropriate times, to members of the Committee on
Appointments and Promotions (CAP). The results are
considered in matters of faculty reappointment, tenure, and
promotion.”

—Office of the Provost, Williams College

Blue sheet prompts:

* Did you look forward to coming to class?

* What course topic did you enjoy the most?

* What course topic did you least enjoy? Do you think
that it was valuable to learn anyway?

* Are there other aspects of the course that you liked
or disliked? (E.g., office hours, TAs, assignments,
course structure, meeting times, etc.) Feel free to
suggest alternatives.

