CSCl 136:
Data Structures and
Advanced Programming
Lecture 33
Graphs, part 4
Instructor: Dan Barowy
Williams

Outline

Double hashing formula
Shortest paths
Teaching evaluations

Announcements
Last date for resubmissions: May 19
Can't accept after: grades due May 19!
Includes labs 5-9, all quizzes.
Lab 7 back today (already graded)
Hashtable activity solution post after class

Life skill \#12:
physical health = mental health

Hash function

$$
h(k)=h_{1}(k) \bmod |T|
$$

where k is the key, and $I T \mid$ is the size of the array T.
$h(k)$ relies on $|T|$. In what class should $h(k)$ be defined?
We typically put $h(k)$ in the hash table implementation.
Note that $h_{1}(k)$ can be defined independently of T.

$$
h_{1}(k)=\text { key } . \text { hashCode () }
$$

How/where are hash codes used?

Double hashing

$$
h(i, k)=\left(h_{1}(k)+i \cdot h_{2}(k)\right) \bmod |T|
$$

where k is the key, i is the i th collision, and $I T \mid$ is the size of the array T.

Again, $h(i, k)$ should appear in the hash table implementation.

$$
\begin{gathered}
h_{1}(k) \text { = key. hashCode () } \\
h_{2}(k) \text { is a second hash function. } \\
h_{2}(k)=\text { toSHA1 (keyToBytes (key)) }
\end{gathered}
$$

Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Applications

Applications

Applications

Applications

Applications

4	3	7		6	8							
			3			8			7			
	8				5		6	6				
	4				1							
8		3		5		6			9	Yesteratas Answer		
			6				3	3		$7{ }^{7} 6$	119	3
	1		5				9	9		$\frac{1}{4}$	${ }_{1} 1268$	
7		5			6					$\frac{5}{8} 9$	641	
			9	8		1	5	5	6	\% 31	498	
										$\frac{9}{65}$	${ }^{3} 5 \frac{5}{2}$	

Dijkstra's algorithm

- Invented by Edsgar Dijkstra in 1959.
- The original version used a min-priority queue.
- Designed using pencil and paper; algorithm was intended to demonstrate to non-technical people how computers could be useful.

function Dijkstra(Graph, source): create vertex set Q for each vertex v in Graph: dist[v] \leftarrow INFINITY prev[V] \leftarrow UNDEFINED add v to Q while Q is not empty: $u \leftarrow$ vertex in Q with min dist[u] remove u from Q for each neighbor v of u : // only v that are still in Q alt $\leftarrow \operatorname{dist}[u]+$ length (u, v) if alt $<\operatorname{dist}[v]:$ dist[v] \leftarrow alt prev[v] $\leftarrow u$ return dist[], prev[] Looking for path from A to F.		
	A	∞
	B	∞
	C	∞
	D	∞
	E	∞
	F	∞
	G	∞
	A B C D E F G	undef undef undef undef undef undef undef

1 function Dijkstra(Graph, source): dist		
${ }_{\frac{2}{2}}^{1}$ function dijkstra(Graph, source):	A	0
${ }_{5}^{4}$ for each vertex v in G raph	B	∞
${ }_{7}^{6} \quad \begin{gathered}\text { dist }[V] \\ \text { prev }[V] \\ -\end{gathered}$	C	∞
8 10 $\quad \begin{gathered}\text { add } v \text { to } 0 \\ \text { dist [source }\end{gathered}$	D	∞
${ }_{12}^{11}$ while Q is not empty:	E	∞
${ }_{14}^{13} \quad u$ - vertex in ℓ ¢ with min dist [u]	F	∞
${ }_{16}^{15}$ remove u from Q	G	∞
	prev	
	A B C D E F G	undef undef undef undef undef undef undef

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|c|}{dist}

\hline ${ }_{3}^{2}$ create vertex set \& A \& 0

\hline ${ }_{5}^{4}$ for each vertex i in G raph \& B \& 4

\hline \& C \& 2

\hline $$
\begin{array}{cc}
8 & \text { add } v \text { to } 0 \\
10 & \text { dist } \text { s source }]
\end{array}
$$ \& D \& ∞

\hline ${ }_{12}^{11}$ while Q is not empty: \& E \& ∞

\hline ${ }_{14}^{13} \quad u *$ vertex in Q with min dist[u] \& F \& ∞

\hline ${ }_{16}^{15}$ remove u from Q \& G \& ∞

\hline \& \&

\hline \& A
B
C
D
E
F
G

SB, \& | undef A A undef undef undef undef |
| :--- |
| E, F\} |

\hline
\end{tabular}

	A	0
	B	4
	C	2
	D	∞
	E	∞
	F	∞
	G	∞
	A B C D E F G	undef A A undef undef undef undef

1 function Dijkstra(Graph, source): dist		
${ }_{3}^{2}$ create vertex set 0	A	0
${ }_{5}^{4}$ for each vertex v in Graph :	B	4
${ }_{7}^{6} \quad$dist $[V]$ prev $[v]$ -	C	2
${ }_{10}^{8}$ add $\begin{gathered}\text { ato } \\ 10 \\ \text { dist ssurcel }\end{gathered}$	D	∞
${ }_{12}^{11}$ while Q is not empty:	E	5
${ }_{14}^{13} \quad \begin{aligned} & \text { ¢ }\end{aligned}$	F	∞
${ }_{16}^{15}$ remove u from Q	G	∞
	A B C D E F G	undef A A undef C undef undef

	dist	
${ }_{3}^{2}$ create vertex set	A	0
${ }_{5}^{4}$ for each vertex v in G raph:	B	4
	C	2
$\begin{gathered} 8 \\ \begin{array}{c} 8 \\ 10 \end{array} \quad \begin{array}{c} \text { add } v \text { to } 0 \\ \text { dist } \text { s source }] \end{array}-0 \end{gathered}$	D	∞
${ }_{12}^{11}$ while Q is not empty:	E	5
	F	∞
${ }_{16}^{15}$ remove u from Q	G	∞
	A B C D E F G	undef A A undef C undef undef

function Dijkstra(Graph, source): dist		
create vertex set Q	A	0
${ }_{5}^{4}$ for each vertex v in ${ }^{\text {a }}$ Graph:	B	4
$\begin{array}{ll}6 & \text { dist }[V] \leftarrow \text { INFINITY } \\ 7 & \text { prev [} v] \leftarrow \text { UNDEFINED }\end{array}$	C	2
${ }_{8}^{8}$ add v to 0 O	D	14
11.10	E	5
	F	∞
15 16 16	G	∞
	A B C D E F G	undef A A B C undef undef

function Dijkstra(Graph, source): create vertex set Q for each vertex v in Graph: dist[v] \leftarrow INFINITY prev $\mathrm{V} V$] \leftarrow UNDEFINED add v to Q while Q is not empty: $u \leftarrow$ vertex in Q with min dist[u] remove u from Q for each neighbor v of u : $/ /$ only v that are still in Q alt $\leftarrow \operatorname{dist}[u]+$ length (u, v) if alt < dist[v]: dist[v] \leftarrow alt prev $[v] \leftarrow u$ return dist[], prev[] Looking for path from A to F.		
	A	0
	B	4
	C	2
	D	9
	E	5
	F	∞
	G	∞
	A B C D E F G	undef A A E C undef undef

1 function Dijjkstra(Graph, source): dist		
${ }_{3}^{2}$ create vertex set Q	A	0
${ }_{5}^{4}$ for each vertex v in G graph:	B	4
	C	2
${ }_{10}^{8} \quad \begin{gathered}\text { add } v \text { to } 0 \\ 10\end{gathered}$	D	9
while Q is not empty:	E	5
${ }_{14}^{13} \quad u \leqslant$ vertex in Q with min dist[u]	F	∞
${ }_{16}^{15}$ remove ufrom Q	G	∞
	A B C D E F G	undef A A E C undef undef

${ }^{1}$ function Dijkstra(Graph, source)	dist	
${ }_{3}^{2}$ create vertex set	A	0
${ }_{5}^{4}$ for each vertex v in graph:	B	4
${ }_{7}^{6}$	C	2
$\begin{gathered}8 \\ 10\end{gathered} \quad \begin{gathered}\text { add } v \text { to } \\ \text { dist }[\text { source }]\end{gathered}-0$	D	9
${ }_{12}^{11}$ while Q is not empty:	E	5
${ }_{14}^{13} \quad u \leqslant$ vertex in ρ with min dist[u]	F	20
${ }_{16}^{15}$ remove u from Q	G	∞
$\begin{array}{ll}21 & \text { prev[v] } \leftarrow u \\ 22 & \text { return dist[], prev[] }\end{array}$		
	A B C D E F G	undef A A E C D undef

create vertex set Q	A	0
${ }_{5}^{4}$ for each vertex V in Graph :	B	4
	C	2
${ }^{8}$ add v to 0	D	9
${ }_{12}^{11}$ while Q is not empty:	E	5
${ }_{14}^{13} \quad u \leqslant$ vertex in Q with min dist[u]	F	20
${ }_{16}^{15}$ remove ufrome	G	∞
	A B C D E F G	undef A A E C D undef

function Dij j kstra(Graph, source)	dist	
${ }_{3}^{2}$ create vertex set 0	A	0
${ }_{5}^{4}$ for each vertex v in $g r a p h: ~$	B	4
	C	2
	D	9
${ }_{12}^{11}$ while Q is not empty:	E	5
${ }_{14}^{13} \quad u$ - vertex in Q with min dist[u]	F	20
${ }_{16}^{15}$ remove ufrom Q	G	∞
Read backward from F and reverse.	A B C D E F G	undef A A E C D undef

You learned a lot this semester! (great job!)

Program design

Composition

Induction

Program performance

\# of copies for doubling expansion:

Neat theorem: $1+2+4+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1$
Suppose $\mathrm{n}=2^{\mathrm{k}}$.
Then $1+\ldots+n / 2=1+\ldots+2^{k} / 2$
$=1+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1=\mathrm{n}-1$
Doubling expansion costs $=\mathbf{O}(n)$

Sorting algorithms
Big-O analysis

Exotic sorting algorithms

Abstract data types (ADTs)

Search algorithms

$$
\begin{aligned}
& 322=365 ? \text { no } \\
& 322<365 ? \text { yes }
\end{aligned}
$$

Useful applications of ADTs

Partially-ordering structures

Number representations

Efficient encoding of structures

High-performance structures

Very general structures: graphs
Graph algorithms

Recap \& Next Class
Today we learned:
Double hashing formula
Shortest paths
Next class:
Final exam review

Evaluation Forms

(all of these are anonymous)

Purpose of Blue Sheets

Student comments on the blue sheets [...] are solely for your benefit. They are not made available to department or program chairs, the Dean of the Faculty, or the CAP for evaluation purposes.
-Office of the Provost, Williams College

Purpose of SCS Forms

"[T]he SCS provides instructors with feedback regarding their courses and teaching. The faculty legislation governing the SCS provides that SCS results are made available to the appropriate department chair, the Dean of the Faculty, and at appropriate times, to members of the Committee on Appointments and Promotions (CAP). The results are considered in matters of faculty reappointment, tenure, and promotion."
-Office of the Provost, Williams College

Blue sheet prompts:

*What course topic did you enjoy the most?
*What course topic did you least enjoy? Do you think that it was valuable to learn anyway?

* Are there other aspects of the course that you liked or disliked? (E.g., office hours, TAs, assignments, course structure, meeting times, etc.) Feel free to suggest alternatives.
* Did you look forward to coming to class?

