
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 32

Hash tables, part 4

Announcements

Lab 10 Part 1 extended: due with Part 2

Part 2: MTF hashtable removed

All graded labs back this week (exc. 10)

Outline

Hashtable recap

Hashtables: big picture

We use hash tables when our problem meets two criteria:

1. A table-like structure is convenient (i.e., a Map<K,V>).

2. We are willing to trade an ordering of elements for high
performance (O(1) put/get), on average.

Hashtables: big picture

What we want:

lunchMenu =

Intuitively: 
You can find what
you’re looking for
quickly.

key value

z

z

z

z

z

z

z

z

z

z

z

z

z

z

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

nuggets

mac n chez

pizza

burgers

fish stix

taco salad

soup

More generally, a table ADT is a Map<K,V>.

Hashtables: big picture

In a table, the key must be unique.

lunchMenu =

key value

z

z

z

z

z

z

z

z

z

z

z

z

z

z

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

nuggets

mac n chez

pizza

burgers

fish stix

taco salad

soup

Hashtables: big picture

Also, the order of entries are not particularly important.

lunchMenu =

key value

z

z

z

z

z

z

z

z

z

z

z

z

z

z

Friday

Tuesday

Sunday

Monday

Wednesday

Thursday

Saturday

fish stix

mac n chez

soup

nuggets

pizza

burgers

taco salad

Hashtables: big picture

0 1 2 3 4 5 6 7

What we have:

We always build complex data
structures from more primitive parts.

An array. Not a table!

Also, associations. Also not a table!

z zMonday nuggets

But with one more ingredient: a table!

Hashtables: big picture

0 1 2 3 4 5 6 7

Let’s build a table from our parts.

z zMonday nuggets

z zTuesday mac n chez z zWednesday pizza

z zThursday burgers

z zFriday fish stix z zSaturday taco salad

z zSunday soup

Close. But why did we insert in those buckets?

Hashtables: big picture

0 1 2 3 4 5 6 7

Last ingredient: a function 
that maps keys to array indices.

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

Hashtables: big picture

0 1 2 3 4 5 6 7

How might we obtain such a function? 
Any function from T ! int will do.

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

(key.CharAt(0) + key.CharAt(1)) % len

Hashtables: big picture

0 1 2 3 4 5 6 7

Some functions are better than others.

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

h(Wednesday) → 4

z zWednesday pizza

(key.CharAt(0) + key.CharAt(1)) % len

Hashtables: big picture

0 1 2 3 4 5 6 7

Some functions are better than others.

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

h(Wednesday) → 4

z zWednesday pizza

“Collision!” Not allowed!

(key.CharAt(0) + key.CharAt(1)) % len

Hashtables: big picture

0 1 2 3 4 5 6 7

Some functions are better than others.

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

h(Wednesday) → 4

z zWednesday pizza

“Collision!” Not allowed!

+ 1

(key.CharAt(0) + key.CharAt(1)) % len

Hashtables: big picture

0 1 2 3 4 5 6 7

z zMonday nuggets

h(Monday) → 4

z zTuesday mac n chez

h(Tuesday) → 1

h(Wednesday) → 4

z zWednesday pizza

“Collision!” Not allowed!

+ 1

When hashed keys collide, we need a recovery method.

(key.CharAt(0) + key.CharAt(1)) % len

Hashtables: big picture

0 1 2 3 4 5 6 7

z zMonday nuggets

z zTuesday mac n chez

h(Wednesday) → 4

z zWednesday pizza

This turns out to be important on lookup too.

(key.CharAt(0) + key.CharAt(1)) % len

Wednesday?

Hashtables: big picture

0 1 2 3 4 5 6 7

z zMonday nuggets

z zTuesday mac n chez

h(Wednesday) → 4

z zWednesday pizza

+ 1

This turns out to be important on lookup too.

(key.CharAt(0) + key.CharAt(1)) % len

Wednesday?

Hashtable recipe
Ingredients:

1. Array (or array-like structure).

2. Association of key and value.

3. Hash function.

4. Collision recovery method.

Insertion (or lookup) procedure:

1. Hash the key to obtain index.

2. If index is occupied (not what we’re looking for), find
new index using recovery method.

3. Insert (or return) key.

Hashtable expansion

A Vector is a convenient way to store key-value
Associations in a hash table because, when the hash table
fills up, a Vector can expand.

But: on expansion, all keys need to be hashed again and
reinserted. Why? Because hash value depends on
Vector length.

(key.CharAt(0) + key.CharAt(1)) % len

Hashtable deletion

Also: deletion of a key may require leaving a placeholder
behind.

0 1 2 3 4 5 6 7

z zMonday nuggets

z zTuesday mac n chez z zWednesday pizza

z zThursday burgers

z zFriday fish stix z zSaturday taco salad

z zSunday soup

Hashtable deletion

Also: deletion of a key may require leaving a placeholder
behind.

0 1 2 3 4 5 6 7

z zTuesday mac n chez z zWednesday pizza

z zThursday burgers

z zFriday fish stix z zSaturday taco salad

z zSunday soup

keep
look-  
ing!

HashAssociation has a reserved flag for this purpose.

Hashtable activity

(key.CharAt(0) + key.CharAt(1)) % len

0 1 2 3

Harry Potter, Gryffindor  
Draco Malfoy, Slytherin 
Luna Lovegood, Ravenclaw 
Gilderoy Lockhart, Ravenclaw 
Cedric Diggory, Hufflepuff 
Hermione Grainger, Gryffindor 
Dolores Umbridge, Slytherin

Recap & Next Class

Today we learned:

Next class:
Shortest paths

Hashtable recap

