Announcements

CSCl 136:
Data Structures
and |
Advanced Programming Move Fri hours to Sat, 12-2
Lecture 31 Next week is last week!
Hash tables, part 3 Return to graphs, final exam review

Instructor: Dan Barowy

Williams
Outline Set
A set is a an abstract data type that stores at most one
Sets copy of each unique value, in no particular order.

hashCodes revisited

Lab 10 part 2 overview

Set ADT operations

Essential Sset<T> operations are:

public void add(T value)

public T remove(T value)

public boolean contains(T value)

public int size()

public void addAll(Structure<E> other)

public boolean containsAll(Structure<E> other)
public void removeAll(Structure<E> other)

public void retainAll(Structure<E> other)

add

remove
contains

unique Ts
union

is subset
difference

intersection

The structure5 SetList<T> implements set<T> using

a list.

Set implementation

Is this a good or bad choice? Worst case analysis:

List<T> (assuming no order)

add:
remove .
contains:

size:

Hashtable<T, ?>

O(n) add: O(n)
O(n) remove ! O(n)
O(n) contains: O(n)
O(1) size: O(1)

Set implementation Hashtable complexity

As with QuickSort, worst-case analysis is misleading for Load factor is a ratio n/k, where n is the number of

hash tables! elements in a hash table and where k is the number of
buckets.
Is this a good or bad choice? Average case analysis: Method | Successful Unsuccessful
Linear probes 3 (1 + Ui—")) 3 (1 + ﬁ)
List<T> (@ssuming no order) Double hashing Lt .
add o(n) External chaining 1+ 3o a+e @

, O() Figure 15.11 Expected theoretical performance of hashing methods, as a function of
remove. n «, the current load factor. Formulas are for the number of association compares needed
. to locate the correct value or to demonstrate that the value cannot be found.

contains: Of(n)
size: O(1) Why is load factor effectively a constant?

Set implementation

As with QuickSort, worst-case analysis is misleading for
hash tables!

Is this a good or bad choice? Average case analysis:

List<T> (assuming no order) Hashtable<T, ?>

add : O(n) add : O(1)
remove ! O(n) remove O(1)
contains: O(n) contains: Of(1)
size: O(1) size: O(1)

https://en.wikipedia.org/wiki/Best%2C_worst_and_average_case#Data_structures

Obstacles?

A set stores at most one unique value of type T.

A map stores at most one unique key of type K along with a
value v.

Dan Ed Jon
null null null

We can repurpose a map and store nothing in the value.

Let's mplement setHashtable<T>

hashCode

hashCode hashCode

The hashCode method defines a hash function for a given
type. In Java, all classes inherit a hashCode method from
Object.

Be aware of the rules when overriding hashCode!

hashCode
public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by HashMap.

For built-in types, Java supplies good default hashCodes. The generalconactof bashcodes:
E.g. String, Character, Integer, Double, etc.

 Whenever it s invoked on the same object more than once during an execution of a Java application, the hashCode method must
consistently retur the same integer, provided no information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same application.

« Iftwo objects are equal according to the equals (Object) method, then calling the hashCode method on each of the two objects must
produce the same integer result.

« Itis not required that if two objects are unequal according to the equals (java. lang.Object) method, then calling the hashCode

FOF user‘deﬁ ned typeS (|e. ClaSSGS that you |m p[emeﬂt), the method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct

integer results for unequal objects may improve the performance of hash tables.

d fault : lvi iat As much as is reasonably practical, the hashCode method defined by class object does return distinct integers for distinct obiects. (This is
efault hashCode Is usua y 1 napproprla e, typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the
Java™ programming language.)

Wi

Returns:

If you intend to use your class as a key in a Map, you should o b et
override both hashCode and equals.

equals(java.lang.Object), System.identityHashCode (java.lang.Object)

Suspiciously similiar demo app. Lab 10 part 2 Overview

Recap & Next Class

Today we learned.

Sets
hashCodes revisited

Lab 10 part 2 overview

Next class:
Back to graphs

