
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 31

Hash tables, part 3

Announcements

Move Fri hours to Sat, 12-2

Next week is last week!

Return to graphs, final exam review

Outline

Sets

hashCodes revisited

Lab 10 part 2 overview

Set

A set is a an abstract data type that stores at most one
copy of each unique value, in no particular order.

Set ADT operations

Essential Set<T> operations are:

public void add(T value) // add

public T remove(T value) // remove

public boolean contains(T value) // contains

public int size() // # unique Ts

public void addAll(Structure<E> other) // union

public boolean containsAll(Structure<E> other) // is subset

public void removeAll(Structure<E> other) // difference

public void retainAll(Structure<E> other) // intersection

Set implementation

The structure5 SetList<T> implements Set<T> using
a list.

Is this a good or bad choice? Worst case analysis:

add :

remove : O(n)

contains : O(n)

size : O(1)

add : O(n)

remove : O(n)

contains : O(n)

size : O(1)

Hashtable<T,?>

O(n)

List<T> (assuming no order)

Set implementation

As with QuickSort, worst-case analysis is misleading for
hash tables!

Is this a good or bad choice? Average case analysis:

add : O(n)

remove : O(n)

contains : O(n)

size : O(1)

List<T> (assuming no order)

Hashtable complexity

Load factor is a ratio n/k, where n is the number of
elements in a hash table and where k is the number of
buckets.

Why is load factor effectively a constant?

Set implementation

As with QuickSort, worst-case analysis is misleading for
hash tables!

Is this a good or bad choice? Average case analysis:

add :

remove : O(n)

contains : O(n)

size : O(1)

add : O(1)

remove : O(1)

contains : O(1)

size : O(1)

Hashtable<T,?>

https://en.wikipedia.org/wiki/Best%2C_worst_and_average_case#Data_structures

List<T> (assuming no order)

O(n)

Obstacles?

A set stores at most one unique value of type T.

A map stores at most one unique key of type K along with a
value V.

0 1 2 3 4 5 6 7

A
Dan
null

Ed
null

Jon
null

We can repurpose a map and store nothing in the value.

Let’s implement SetHashtable<T> hashCode

hashCode

The hashCode method defines a hash function for a given
type. In Java, all classes inherit a hashCode method from
Object.

For built-in types, Java supplies good default hashCodes.
E.g., String, Character, Integer, Double, etc.

For user-defined types (i.e., classes that you implement), the
default hashCode is usually inappropriate.

If you intend to use your class as a key in a Map, you should
override both hashCode and equals.

Be aware of the rules when overriding hashCode!

hashCode

Suspiciously similiar demo app. Lab 10 part 2 Overview

Recap & Next Class

Today we learned:

Next class:
Back to graphs

Sets

hashCodes revisited

Lab 10 part 2 overview

