Announcements

CSCl 136
Data Structures
and
Advanced Programming CS Majors Bowling Party Fri @ 2.30

Lecture 30 . .
3 New CS majors, please join us!

Hash tables, part 2

Instructor: Dan Barowy

Williams

Outline

Perfect hashing
The real world: collisions

Open addressing Quiz
External chaining
Java hashCode

Perfect hashing

Hash collisions

A hash collision is when two or more distinct keys have
the same hash value.

index(“Dan”) » 6

index(“Benedict Cumberbatch”) -» 6

Perfect hash function

A perfect hash function is a hash function that ensures that
distinct keys map to distinct indices. l.e., there are no
collisions.

index(“Dan”) > 6

index(“Benedict Cumberbatch”) -» 6

Perfect hash function

Problem: It's pretty darn hard to come up with a perfect
hash function.

1. You need to know all possible keys in advance.

2. If the number of possible keys is large, it is expensive to
compute (O(n2) time) and expensive to store (O(n)
space).

With a good hash table implementation, “imperfect” hash
functions are usually good enough.

Dealing with collisions

There are two approaches to dealing with collisions:
1. Change your hash function.

2. Change your hash table design.

Both solutions usually require expertise in CS.

Which one should experts spend their time on?

Open addressing

Open addressing is a method for resolving collisions in a
hash table. Collisions are resolved by probing, which is a
predetermined method for searching the hash table (aka a
probe sequence). On insertion, probing finds the first
available bucket. On lookup, probing searches until either
the key is found or an empty space is found.

Linear probing

Suppose our keys are Strings and our hash function is
((int) key.charAt(0)) % A.length

(i.e. a low-quality hash function).
collision!

Dan
-11

o 1 2 3 Ja'\s 6 17
key: “Dan”, value: -11

index(“Dan”) -» 4

key: “Dirk”, wvalue: 20
index(“Dirk”) -» 4

Linear probing

Linear probing works by scanning for h(key) + ¢ x I, where ¢
is a constant (usually 1) and / is the ith attempt.

collision!

0 1 2 3 6 17
key: “Dan”, value: -11
index(“Dan”) -» 4

retry

key: “Dirk”, wvalue: 20
index(“Dirk”) - }(5

Linear probing

Linear probing works by scanning for h(key) + ¢ x I, where ¢
is a constant (usually 1) and / is the ith attempt.

0 1 2 3

key: “Don”, value: -11
index(“Don”) » A 5 6

Linear probing

Downside: values cluster around collisions.

collision!
» HES
o 1 2 3 4 6 7

key: “Ed”, value: 7 ///////K/

index(“Ed") » & 7

Likelihood of collisions grows as cluster grows.

Our table is still half empty! This is bad!

Linear probing
h(key) +c x|
Changing ¢ helps some.

Eg.c=2
collision!

Dan Dirk
-11 20

o 1 2 3 Ja'\ s 6 7
key: “Dan”, value: -11

index(“Dan”) -» 4

key: “Dirk”, value: 20
index(“Dirk”) » 4 6

Linear probing

Changing ¢ helps some.

But it can also make the problem worse.

Don Doug Dan Dirk Deb ? 7 ’

6 22 -11 20 101 w u =n

0 1 2 3 4 5 6 7

key: “Dan”, value: -11

index(“Dan”) -» 4 Now we are only

using 1/¢ buckets!
key: “Dirk”, wvalue: 20

index(“Dirk”) » 4 6

Linear probing: deletion Linear probing: deletion

Deletions are also problematic. Deletions are also problematic.

Addressed by leaving a sentinel value at deleted location.

S il I s O e I a) e W
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
delete(“Dan”) delete(“Dan”)
lookup(“Dirk") lookup(“Dirk")
We can no longer find Dirk. Doesn't reclaim space until all colliding entries deleted.
External chaining External chaining

Same bad hash function:

((int) key.charAt(0)) % A.length

External chaining is a method for resolving collisions in a

.- , collision!
hash table. Collisions are resolved by storing more than
one value in a bucket, e.g., using a list. A |
o 1 2 3 4 5 6 71
key: “Dan”, value: -11 Dﬁ
index(“Dan”) » 4 i
key: “Dirk”, wvalue: 20 %?

index (“Dirk”) -» 4

External chaining: deletion

Deletion is trivial.

Dirk
20

Complexity

Method | Successful Unsuccessful
H 1 1 1 1
Linear probes 3 (1 + W) 5 (1 + 1=)
Double hashing Lin ﬁ e
External chaining 1+ 3o ate @

Figure 15.11 Expected theoretical performance of hashing methods, as a function of

«, the current load factor. Formulas are for the number of association compares needed
to locate the correct value or to demonstrate that the value cannot be found.

Hash codes

Good hash functions are provided for common types.
You can override for your own classes.

hashCode
public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by Hashitap.
The general contract of hashCode is:

 Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must
consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same application.

« Iftwo objects are equal according to the equals (Object) method, then calling the hashCode method on each of the two objects must

l produce the same integer result.
_—.—b « Itis not required that if two objects are unequal according to the equals (java.lang.Object) method, then calling the hashCode

method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct
integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class object does return distinct integers for distinct objects. (This is
typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the
Java™ programming language.)
Returns:

a hash code value for this object
See Also:

equals(java.lang.Object), System.identityHashCode (java.lang.Object)

Code: let's check the quality of hashCode

Recap & Next Class

Today we learned.
Perfect hashing

Collisions
Linear probing
External chaining
hashCode

Next class:

More fun hash stuff

