
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 30

Hash tables, part 2

Announcements

CS Majors Bowling Party Fri @ 2:30

New CS majors, please join us!

Outline

Perfect hashing

The real world: collisions

Open addressing

External chaining

Java hashCode

Quiz

Perfect hashing

Hash collisions

A hash collision is when two or more distinct keys have
the same hash value.

0 1 2 3 4 5 6 7

A ?

index(“Dan”) ! 6

index(“Benedict Cumberbatch”) ! 6

Perfect hash function

A perfect hash function is a hash function that ensures that
distinct keys map to distinct indices. I.e., there are no
collisions.

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 6

index(“Benedict Cumberbatch”) ! 6

Perfect hash function

Problem: It’s pretty darn hard to come up with a perfect
hash function.

1. You need to know all possible keys in advance.

2. If the number of possible keys is large, it is expensive to
compute (O(n2) time) and expensive to store (O(n)
space).

With a good hash table implementation, “imperfect” hash
functions are usually good enough.

Dealing with collisions

There are two approaches to dealing with collisions:

1. Change your hash function.

2. Change your hash table design.

Both solutions usually require expertise in CS.

Which one should experts spend their time on?

Open addressing

Open addressing is a method for resolving collisions in a
hash table. Collisions are resolved by probing, which is a
predetermined method for searching the hash table (aka a
probe sequence). On insertion, probing finds the first
available bucket. On lookup, probing searches until either
the key is found or an empty space is found.

Linear probing

Suppose our keys are Strings and our hash function is

((int) key.charAt(0)) % A.length

(i.e., a low-quality hash function).

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (usually 1) and i is the ith attempt.

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

retry

Dirk
20

5

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (usually 1) and i is the ith attempt.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Don”, value: -11

Dirk
20

index(“Don”) ! 4 5 6

Don
6

Linear probing

Downside: values cluster around collisions.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Ed”, value: 7

Dirk
20

Don
6

index(“Ed”) ! 6

collision!

Likelihood of collisions grows as cluster grows.

Our table is still half empty! This is bad!

7

Linear probing
h(key) + c × i

Changing c helps some.

E.g., c = 2.

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!
Dirk
20

6

Linear probing

Changing c helps some.

But it can also make the problem worse.

0 1 2 3 4 5 6 7

A

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

Dirk
20

6

Don
6

Doug
22

Deb
101 ???

Now we are only

using 1/c buckets!

Linear probing: deletion

Deletions are also problematic.

0 1 2 3 4 5 6 7

A
Dan
-11

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

We can no longer find Dirk.

Linear probing: deletion

Deletions are also problematic.

0 1 2 3 4 5 6 7

A
keep  
look  
ing!

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

Addressed by leaving a sentinel value at deleted location.

Doesn’t reclaim space until all colliding entries deleted.

External chaining

External chaining is a method for resolving collisions in a
hash table. Collisions are resolved by storing more than
one value in a bucket, e.g., using a list.

External chaining

Same bad hash function:

((int) key.charAt(0)) % A.length

index(“Dan”) ! 4

index(“Dirk”) ! 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

0 1 2 3 4 5 6 7

A

Dirk
20

External chaining: deletion

Deletion is trivial.

0 1 2 3 4 5 6 7

A

Dan
-11

Dirk
20

Complexity

Hash codes

Good hash functions are provided for common types.

You can override for your own classes.

Code: let’s check the quality of hashCode

Recap & Next Class

Today we learned:

Next class:
More fun hash stuff

Perfect hashing

Collisions

Linear probing

External chaining

hashCode

