
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 29

Hash tables, part 1

Announcements

Two-week lab.

PRE-LAB: choose your own partner.

No design doc PRE-LAB.

May 8 lab meeting is optional.

Outline

Topological ordering

Hash tables
DAGs / Topological ordering

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.

1
2

10

6
4

8

3
5

7

9

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.

1 2 1064 83 57 9

Good question

What makes a topological ordering “topological”?

Fun fact: graph theory used to be considered a branch of
the field of topology in mathematics. Topology is the study
of spaces under continuous deformations. Graphs can be
thought of as “spaces” since many of their properties are
invariant under continuous deformation.

Note that a topological sort produces an order with no
regard to the values stored in a graph. Instead, the order is
purely the result of the connectedness of the graph. The
connectedness of a graph does not change if you stretch or
twist it.

Topological ordering

E.g., how does a factory decide what parts of a car to
assemble first?

Produce a topological ordering of the vertices in the
assembly dependence graph.

Algorithm: topological sort:

• For each node of the graph (in any order), recursively visit
in a depth-first manner. After visiting each node, add it to
the head of the list.

• When visiting, return (do not recurse) when:

•A node has already been visited, or

• the node has no outgoing edges.

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

9, 1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Yes!

Topological sort (depth-first)
L ← Empty list that will contain the sorted nodes
while exists nodes without a permanent mark do
 select an unmarked node n
 visit(n)

function visit(node n)
 if n has a permanent mark then return
 if n has a temporary mark then stop (not a DAG)
 mark n with a temporary mark
 for each node m with an edge from n to m do
 visit(m)
 remove temporary mark from n
 mark n with a permanent mark
 add n to head of L

(from Wikipedia: topological sort)

Question

Why does revisiting a temporary mark (vs
permanent or unmarked) mean that the

graph is not a DAG?

Activity

1
9

6

8
5

3

2

4
7

Is this graph a DAG?

If so, produce a topological ordering of the vertices.

Hash tables

Recall: arrays

An array is a data structure consisting of a sequential
collection of elements, each identified by an index.

0 1 2 3 4 5 6 7

Performance guarantees:

1. read using index: O(1)

2. write using index: O(1)

13 2 451 42 9 6 -4 8

Can we capture some of this for a more general structure?

A

Generalization: associative array
An associative array or key-value store is a data structure
consisting of a sequential collection of elements, each
identified by a key.

Performance guarantees:

1. read using index: O(1)?

2. write using index: O(1)?

Joe Adam Sue Ed Sam Fay Dan Ted

13 2 451 42 9 6 -4 8A

Need: function to map key to index

Suppose we had a function:
h(k) → z

where k is a key of arbitrary value and z ∈ ℤ,

then we could construct another function:

Joe Adam Sue Ed Sam Fay Dan Ted

13 2 451 42 9 6 -4 8A

int index(K key) {  
 return abs(h(key) % A.length);  
}

Hash function

A hash function is any function that can be used to map
data of arbitrary size onto data of a fixed size.

Joe Adam Sue Ed Sam Fay Dan Ted

13 2 451 42 9 6 -4 8A

String of length 2.

String of length 3.

String of length 4.

Why not “Benedict Cumberbatch”?

Nerd rant
A.O. Scott in The New York Times’
review deduced from the film
that Turing was “a sentient robot,
an empathetic space alien, a
warm-blooded salamander with
crazy sex appeal.”

“[C]olleagues at the time called
him intensely shy and kindly.”

“… unfailingly generous with his
time and expertise …”

“… inspired loyalty and affection
among those who appreciated
his unusual gifts.”

See: http://blog.yalebooks.com/2015/01/07/alan-turing/

Hash function

Useful hash functions also provide the following
guarantees:

Determinism: a given input value must always generate the
same hash value.

Uniformity: maps the expected inputs as evenly as possible
over its output range.

Equivalence: any two values that are considered equivalent
should produce the same hash value.

Hash table

A hash table is a data structure that implements an
associative array abstract data type. A hash table uses a
hash function to compute an index into an array of
buckets, from which the desired value can be found.

0 1 2 3 4 5 6 7

A

“Dan”, -4

index(“Dan”) ! 6
A[index(“Dan”)] = -4

-4

Question

Is a function that generates a random
number a good hash function?

No. Random numbers do tend to be
uniform, but are not deterministic.

Activity

Determinism: a given input value must always generate the
same hash value.

Uniformity: maps the expected inputs as evenly as possible
over its output range.

Equivalence: any two values that are considered equivalent
should produce the same hash value.

See if you can come up with a simple hash function for
strings.

Code: let’s check the quality of hash

American Standard Code for Information Interchange
(ASCII)

Hash codes

Hashing so important that every Object in Java has a built-
in hash function.

Hash collisions

A hash collision is when two or more distinct keys have
the same hash value.

0 1 2 3 4 5 6 7

A ?

index(“Dan”) ! 6

index(“Benedict Cumberbatch”) ! 6

Recap & Next Class

Today we learned:

Next class:

Avoiding hash collisions

Collision-resistant hash tables

Topological order

Hash tables

