
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 28

Graphs, part 3

Announcements

New majors, welcome.

20 colloquiua to graduate.

Today’s speaker: James Lester from
NCSU, 2:30-4pm, Wege Auditorium.

Lab 10: choose your own partner.

Two-week lab.

May 8 lab meeting is optional.

Outline

Greedy algorithms

Minimum-weight spanning trees

Directed Acyclic Graphs

Topological ordering

Quiz

Greedy algorithms

Greedy algorithm

A greedy algorithm is a style of algorithm that makes
locally-optimal choices in an attempt to compute a
globally-optimal solution. Greedy algorithms may or
may not find the globally-optimal solution. However,
greedy algorithms are usually fast, and they often
compute a close approximation of the globally-optimal
solutions.

Greedy algorithm: example

Minimum weight spanning tree problem

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the
graph.

Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the
graph.

Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the
graph.

Minimum-Weight Spanning tree

Given a connected graph with edge weights, a minimum-
weight spanning tree is spanning tree that minimizes the
sum of the edge weights.

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

1 + 2 + 2 + 3 + 3 + 4 + 7 + 8 + 8 = 38

MWST problem

Given a connected graph with edge weights, find a
minimum-weight spanning tree.

Conveniently, MWST admits a greedy solution.

Kruskal’s algorithm:

Invented by Joseph Kruskal in 1956.

Simple idea:
• Pick the smallest weight edge that

does not introduce a cycle.
• Repeat until the tree includes all

vertices.

Kruskal’s algorithm
• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

Kruskal’s algorithm

1

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3 + 4

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3 + 4 + 7

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3 + 4 + 7 + 8

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3 + 4 + 7 + 8 + 8

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Kruskal’s algorithm

1 + 2 + 2 + 3 + 3 + 4 + 7 + 8 + 8 = 38

4 4
1

39 5

9 10

18

9

8

7

2

2
46

9

9
9

3

8

• Pick the smallest weight edge that does not introduce a cycle.
• Repeat until the tree includes all vertices.

Global optima

Greedy algorithms are guaranteed to produce globally-
optimal solutions when two conditions hold:

Optimal substructure: the optimal solution is composed
of optimal solutions to its subproblems.

Greedy choice property: locally-optimal decisions are
sufficient to find optimal solutions; i.e., a greedy algorithm
never reconsiders a decision.

Directed Acyclic Graphs

Directed Acyclic Graph

1
2

10

6
4

8

3
5

7

9

A directed acyclic graph (DAG) is a directed graph that
contains no directed cycles.

Directed Acyclic Graph

DAGs are widely used to encode relations that admit a
partial order.

In particular, they are often used in scenarios where is the
there is a dependence relationship.

E.g., Java source code files have a dependence relationship
that forms a DAG.

import java.util.Iterator;
import structure5.*;
…

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.

1
2

10

6
4

8

3
5

7

9

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.

1 2 1064 83 57 9

Topological ordering

E.g., how does Java decide what source code files to
compile first?

javac produces a topological ordering of the vertices in
the file dependence graph.

Algorithm: topological sort:

• For each node of the graph (in any order), recursively visit
in a depth-first manner. After visiting each node, add it to
the head of the list.

• When visiting, return (do not recurse) when:

•A node has already been visited, or

• the node has no outgoing edges.

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

10

Topological sort

1
2

10

6
4

8

3
5

7

9

8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

9, 1, 2, 4, 6, 3, 5, 8, 10

Topological sort

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Topological sort: check

1
2

10

6
4

8

3
5

7

9

7, 9, 1, 2, 4, 6, 3, 5, 8, 10

Are we always only following directed edges?

Yes!

Recap & Next Class

Today we learned:

Next class:

Finish topological sorting algorithm

Hash tables

Greedy algorithms

Minimum-weight spanning trees

DAGs

Topological order

