CSCl 136:
Data Structures
and
Advanced Programming

Lecture 28

Graphs, part 3

Instructor: Dan Barowy
Williams

Announcements
New majors, welcome.

20 colloquiua to graduate.

Today's speaker: James Lester from
NCSU, 2:30-4pm, Wege Auditorium.,

Lab 10: choose your own partner.
Two-week lab.
May 8 lab meeting is optional.

Outline

Greedy algorithms
Minimum-weight spanning trees
Directed Acyclic Graphs

Topological ordering

Quiz




Greedy algorithm

A greedy algorithm is a style of algorithm that makes
locally-optimal choices in an attempt to compute a
globally-optimal solution. Greedy algorithms may or
may not find the globally-optimal solution. However,

Greedy a[gorithmg greedy algorithms are usually fast, and they often
compute a close approximation of the globally-optimal
solutions.

Greedy algorithm: example Spanning tree
Given a connected graph, a spanning tree is a subset of
Minimum weight spanning tree problem edges that is both a tree and connects all vertices in the

graph.




Spanning tree

Given a connected graph, a spanning tree is a subset of
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Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the

graph.

Minimum-Weight Spanning tree

Given a connected graph with edge weights, a minimum-
weight spanning tree is spanning tree that minimizes the
sum of the edge weights.

1+42+2+3+3+4+7+8+8=38

MW/ST problem

Given a connected graph with edge weights, find a
minimum-weight spanning tree.

Conveniently, MWST admits a greedy solution.

Kruskal's algorithm:

Invented by Joseph Kruskal in 1956.

+ Pick the smallest weight edge that
does not introduce a cycle.

- Repeat until the tree includes all
vertices.
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Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
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Kruskal's algorithm

* Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3

Kruskal's algorithm

+ Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3+3

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.
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Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3+3+4+7




Kruskal's algorithm

* Pick the smallest weight edge that does not introduce a cycle.

- Repeat until the tree includes all vertices.

1+2+2+3+3+4+7+8

Kruskal's algorithm

+ Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+2+2+3+3+4+7+8+8

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.

- Repeat until the tree includes all vertices.

1+42+2+3+3+4+7+8+8=38

Global optima

Greedy algorithms are guaranteed to produce globally-
optimal solutions when two conditions hold:

Optimal substructure: the optimal solution is composed
of optimal solutions to its subproblems.

Greedy choice property: locally-optimal decisions are
sufficient to find optimal solutions; i.e., a greedy algorithm
never reconsiders a decision.




Directed Acyclic Graphs

Directed Acyclic Graph

A directed acyclic graph (DAG) is a directed graph that
contains no directed cycles.

Directed Acyclic Graph

DAGs are widely used to encode relations that admit a
partial order.

In particular, they are often used in scenarios where is the
there is a dependence relationship.

E.g., Java source code files have a dependence relationship
that forms a DAG.

import java.util.Iterator;
import structure5.*;

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.




Topological ordering Topological ordering

E.g. how does Java decide what source code files to

A topological ordering of a directed acyclic graph is a compile first?

linear ordering of its vertices such that for every directed

edge u,v from vertex u to vertex v, u comes before v in the javac produces a topological ordering of the vertices in
ordering. the file dependence graph.

Algorithm: topological sort:

- For each node of the graph (in any order), recursively visit
in a depth-first manner. After visiting each node, add it to
the head of the list.

+ When visiting, return (do not recurse) when:
- A node has already been visited, or
-the node has no outgoing edges.

Topological sort Topological sort
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Topological sort
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Topological sort
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Topological sort

9,1,24,6,3,5,8,10

Topological sort

7,91,24,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7,91,24,6,3,5,8,10
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Topological sort: check
Are we always only following directed edges?

7; 9; 11 2! 4; 6, 3, 5, 8, 10

Topological sort: check
Are we always only following directed edges?

7; 9; 1; 2; 4; 6, 3, 5, 8, 10




Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Yes!

Recap & Next Class

Today we learned.
Greedy algorithms

Minimum-weight spanning trees
DAGCs
Topological order

Next class:
Finish topological sorting algorithm
Hash tables




