CSCl 136:
Data Structures
and
Advanced Programming

Lecture 28

Graphs, part 3

Instructor: Dan Barowy
Williams

Announcements
New majors, welcome.

20 colloquiua to graduate.

Today's speaker: James Lester from
NCSU, 2:30-4pm, Wege Auditorium.,

Lab 10: choose your own partner.
Two-week lab.
May 8 lab meeting is optional.

Outline

Greedy algorithms
Minimum-weight spanning trees
Directed Acyclic Graphs

Topological ordering

Quiz




Greedy algorithm

A greedy algorithm is a style of algorithm that makes
locally-optimal choices in an attempt to compute a
globally-optimal solution. Greedy algorithms may or
may not find the globally-optimal solution. However,

Greedy a[gorithmg greedy algorithms are usually fast, and they often
compute a close approximation of the globally-optimal
solutions.

Greedy algorithm: example Spanning tree
Given a connected graph, a spanning tree is a subset of
Minimum weight spanning tree problem edges that is both a tree and connects all vertices in the

graph.




Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the

graph.

Spanning tree

Given a connected graph, a spanning tree is a subset of
edges that is both a tree and connects all vertices in the

graph.

Minimum-Weight Spanning tree

Given a connected graph with edge weights, a minimum-
weight spanning tree is spanning tree that minimizes the
sum of the edge weights.

1+42+2+3+3+4+7+8+8=38

MW/ST problem

Given a connected graph with edge weights, find a
minimum-weight spanning tree.

Conveniently, MWST admits a greedy solution.

Kruskal's algorithm:

Invented by Joseph Kruskal in 1956.

+ Pick the smallest weight edge that
does not introduce a cycle.

- Repeat until the tree includes all
vertices.




Kruskal's algorithm

* Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

Kruskal's algorithm

+ Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+2

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+2+2




Kruskal's algorithm

* Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3

Kruskal's algorithm

+ Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3+3

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3+3+4

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+42+2+3+3+4+7




Kruskal's algorithm

* Pick the smallest weight edge that does not introduce a cycle.

- Repeat until the tree includes all vertices.

1+2+2+3+3+4+7+8

Kruskal's algorithm

+ Pick the smallest weight edge that does not introduce a cycle.
- Repeat until the tree includes all vertices.

1+2+2+3+3+4+7+8+8

Kruskal's algorithm

- Pick the smallest weight edge that does not introduce a cycle.

- Repeat until the tree includes all vertices.

1+42+2+3+3+4+7+8+8=38

Global optima

Greedy algorithms are guaranteed to produce globally-
optimal solutions when two conditions hold:

Optimal substructure: the optimal solution is composed
of optimal solutions to its subproblems.

Greedy choice property: locally-optimal decisions are
sufficient to find optimal solutions; i.e., a greedy algorithm
never reconsiders a decision.




Directed Acyclic Graphs

Directed Acyclic Graph

A directed acyclic graph (DAG) is a directed graph that
contains no directed cycles.

Directed Acyclic Graph

DAGs are widely used to encode relations that admit a
partial order.

In particular, they are often used in scenarios where is the
there is a dependence relationship.

E.g., Java source code files have a dependence relationship
that forms a DAG.

import java.util.Iterator;
import structure5.*;

Topological ordering

A topological ordering of a directed acyclic graph is a
linear ordering of its vertices such that for every directed
edge u,v from vertex u to vertex v, u comes before v in the
ordering.




Topological ordering Topological ordering

E.g. how does Java decide what source code files to

A topological ordering of a directed acyclic graph is a compile first?

linear ordering of its vertices such that for every directed

edge u,v from vertex u to vertex v, u comes before v in the javac produces a topological ordering of the vertices in
ordering. the file dependence graph.

Algorithm: topological sort:

- For each node of the graph (in any order), recursively visit
in a depth-first manner. After visiting each node, add it to
the head of the list.

+ When visiting, return (do not recurse) when:
- A node has already been visited, or
-the node has no outgoing edges.

Topological sort Topological sort




Topological sort

Topological sort

Topological sort

10

Topological sort

10




Topological sort

10

Topological sort

10

Topological sort

10

Topological sort

10




Topological sort

Topological sort

5,8,10

Topological sort

3,5,8,10

Topological sort

6,3,5,8,10




Topological sort

4,6,3,5,8,10

Topological sort

2,4,6,3,5,8,10

Topological sort

1,2,4,6,3,5,8,10

Topological sort

1,2,4,6,3,5,8,10




Topological sort

1,2,4,6,3,5,8,10

Topological sort

9,1,24,6,3,5,8,10

Topological sort

7,91,24,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7,91,24,6,3,5,8,10




Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7; 9; 11 2! 4; 6, 3, 5, 8, 10

Topological sort: check
Are we always only following directed edges?

7; 9; 1; 2; 41 6, 3, 5, 8, 10




Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Topological sort: check
Are we always only following directed edges?

7; 9; 11 2! 4; 6, 3, 5, 8, 10

Topological sort: check
Are we always only following directed edges?

7; 9; 1; 2; 4; 6, 3, 5, 8, 10




Topological sort: check
Are we always only following directed edges?

7,9,1,2,4,6,3,5,8,10

Yes!

Recap & Next Class

Today we learned.
Greedy algorithms

Minimum-weight spanning trees
DAGCs
Topological order

Next class:
Finish topological sorting algorithm
Hash tables




