CSCl 136
Data Structures
and
Advanced Programming

Lecture 27

Graphs, part 2

Instructor: Dan Barowy
Williams

More graph definitions

Outline

More graph defs
Graph ADT operations
Graph representations

Reachability and Connectedness

“Siri, can | drive from Boston to Hong Kong?”

“Siri, can | drive from any point to any other point?”

Reachability

A vertex v in G is reachable from vertex u in G if there is a
path fromutov.

For an undirected graph G, v is reachable from vertex u iff
u is reachable from vertex v.

Is ¢ reachable from d? Yes.

Connectedness

An undirected graph G is connected if for every pair of
vertices u, vin G, v is reachable from u.

The set of all vertices reachable from v, along with all
edges of G connecting any two of them, is called the
connected component of v.

(note that the connected component is itself a graph)

Graph operations

Fundamental graph ADT operations

adjacent(a, d) = true
adjacent(a, b) = false
adjacent(a, c) = false

bool adjacent(Vertex u, Vextex v):
Given vertices u and v, are they adjacent?

(i.e., share an edge?)

Fundamental graph ADT operations

vertices(1l) = [a, b]

vertices(2) = [d, b]

Vertex[] vertices(Edge e):

Given edge e, what are its end points?

Fundamental graph ADT operations

incident(a, 1)

incident(a, 2) =

bool incident(Vertex v, Edge e):
Given vertex v and edge e, are they incident?

(i.e. is v an endpoint of edge e?)

Fundamental graph ADT operations

degree(a) = 2

1]
o

degree(c)

int degree(Vertex v):

Given vertex v how many vertices are adjacent?

Fundamental graph ADT operations

neighbors(a) = [d, b]

neighbors(c)

[1]

Vertex[] neighbors(Vertex v):

Given vertex v what other vertices are adjacent?

Adjacency matrix

An adjacency matrix is a data structure for representing a
finite graph. It consists of a square matrix (usually
implemented as an array of arrays). In the simplest case,
the elements of the matrix indicate whether an edge is

. present. Elements on the diagonal are defined as zero.
Graph representations

d 0 1 1 0
Adjacency matrix Adjacency matrix
In an undirected graph, the adjacency matrix is In an undirected graph, the adjacency matrix is
symmetric. symmetric.
a b c d a b c d
a 0 1 0 0 a 0 1 0 0
b 1 0 0 1 b 1 0 0 1
© 0 0 0 1 © 0 0 0 1
d 0 1 1 0 d 0 1 1

Adjacency matrix

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

In an undirected graph, the adjacency matrix is
symmetric.

b 1 o 1
c 0 0 0 1
d 0o 1 1 o0

Adjacency matrix

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from—to, is conventionally encoded in row-major form.

/o a b c d

° a 0 0 0 o0
(o]
e d 0 o 1 o0

0/'

Adjacency matrix

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from—to, is conventionally encoded in row-major form.

/o a | bje | d

° a 0 o0 0 o0
]
e d 0 0o 4 o

c/'

Adjacency matrix

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from—to, is conventionally encoded in row-major form.

A////Ai' a b ¢ d

"' a 0 0 0 o0

c 0
‘t’k,,»‘,' d 0 0 1 0

Adjacency matrix

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from—to, is conventionally encoded in row-major form.

‘////‘l' a b ¢ d

." a 0 0 0 o0
c,r__'it’ d 0 0 1 0

Adjacency list

An adjacency list is a data structure for representing a
finite graph. It consists of a list of unordered lists.

[[c,d],[d,b],[a,b]]

Adjacency list

There are many variants on adjacency lists. The most
common is the object-oriented adjacency list that stores
a list of adjacent vertices in each vertex object.

a: [b]
b: [a,d]
c: [d]
d: [b,c]

Adjacency list
Object-oriented adjacency list:

public class Vertex<T> {
T label;
List<Vertex<T>> neighbors = new SinglyLinkedList<>();

} Vertex

label d

neighbors I

SLL *

head / \l tail

Node Node

C '4*.b ¢|

'3 I
(strictly speaking, ¢ and d are references to Vertex objects)

Adjacency list

This latter version is especially thrifty for directed graphs.

°/'

[]
[a,d]
[]
[c]

an0bowe

Activity

Write down both adjacency matrix and adjacency list
representations for this graph.

o
o1\ —©

o—°

Which one is better for this graph? Why? (think Big-O)

Activity: connectedness

boolean connected():
How might | compute this using fundamental ops?

(adjacent, vertices, incident, degree, neighbors)

(note that graph is undirected)

|dea: breadth-first counting

dea:
(suppose we know |G|)
boolean isConnected(Vertex start)

let count = 0

let Q be an empty queue

enqueue start

while Q not empty

a. dequeuev

b. countv

c. mark v as visited

d. putVv's unmarked neighborsin Q

5. if count = # of vertices in graph, return true else false

rwN e

Algorithm: connectedness

initialize algorithm

count 0

Algorithm: connectedness

dequeue v

count 0

Algorithm: connectedness

countv

count 1

Algorithm: connectedness

mark v

count 1

Algorithm: connectedness

enqueue unmarked neighbors

count 1

Algorithm: connectedness

dequeue v

O
o9

count 1

Algorithm: connectedness

countv

2
g%e
o9

count 2

Algorithm: connectedness

mark v

O
o9

count 2

Algorithm: connectedness

enqueue unmarked neighbors

O
o

count 2

0 d

Algorithm: connectedness

dequeue v

count 2

Algorithm: connectedness

countv

count 3

Algorithm: connectedness

mark v

count 3

Algorithm: connectedness

enqueue unmarked neighbors

count 3

Algorithm: connectedness

dequeue v

e
o—°

count 3

Algorithm: connectedness

countv

e
o2

count 4

Algorithm: connectedness

mark v

count 4

Algorithm: connectedness

enqueue unmarked neighbors

count 4

Algorithm: connectedness

dequeue v

count 4

Algorithm: connectedness

countv

count 5

Algorithm: connectedness

mark v

count 5

Algorithm: connectedness

dequeue v (but don't visit)

count 5

Algorithm: connectedness

compute |G| == count

count 5 return 5 == 5
(true)

Recap & Next Class

Today we learned:
More graph definitions

Graph ADT operations
Graph representations

Next class:

Interesting graph problems

