
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 27

Graphs, part 2

More graph definitions

Outline

More graph defs

Graph ADT operations

Graph representations

Reachability and Connectedness

“Siri, can I drive from Boston to Hong Kong?”

“Siri, can I drive from any point to any other point?”

Reachability

A vertex v in G is reachable from vertex u in G if there is a
path from u to v.

For an undirected graph G, v is reachable from vertex u iff
u is reachable from vertex v.

d

a

b

c

Is c reachable from d? Yes.

Connectedness

An undirected graph G is connected if for every pair of
vertices u, v in G, v is reachable from u.

The set of all vertices reachable from v, along with all
edges of G connecting any two of them, is called the
connected component of v.

(note that the connected component is itself a graph)

d

a

b

c

Graph operations

Fundamental graph ADT operations

d

a

b

c

bool adjacent(Vertex u, Vextex v):

Given vertices u and v, are they adjacent?

(i.e., share an edge?)

adjacent(a, d)

adjacent(a, b)

adjacent(a, c)

= true

= false

= false

Fundamental graph ADT operations

d

a

b

c

Vertex[] vertices(Edge e):

Given edge e, what are its end points?

1

2

3

vertices(1)

vertices(2)

= [a, b]

= [d, b]

Fundamental graph ADT operations

d

a

b

c

bool incident(Vertex v, Edge e):

Given vertex v and edge e, are they incident?

(i.e., is v an endpoint of edge e?)

incident(a, 1)

incident(a, 2)

1

2

3

= true

= false

Fundamental graph ADT operations

d

a

b

c

int degree(Vertex v):

Given vertex v how many vertices are adjacent?

degree(a)

degree(c)

= 2

= 0

Fundamental graph ADT operations

d

a

b

c

Vertex[] neighbors(Vertex v):

Given vertex v what other vertices are adjacent?

neighbors(a)

neighbors(c)

= [d, b]

= []

Graph representations

Adjacency matrix

An adjacency matrix is a data structure for representing a
finite graph. It consists of a square matrix (usually
implemented as an array of arrays). In the simplest case,
the elements of the matrix indicate whether an edge is
present. Elements on the diagonal are defined as zero.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

In an undirected graph, the adjacency matrix is
symmetric.

c

b

a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

c

b

a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1
d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1
c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b

a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from→to, is conventionally encoded in row-major form.

Adjacency matrix

c

b

a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from→to, is conventionally encoded in row-major form.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1
c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from→to, is conventionally encoded in row-major form.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not
symmetric because edges are directed. A directed edge,
from→to, is conventionally encoded in row-major form.

Adjacency list

An adjacency list is a data structure for representing a
finite graph. It consists of a list of unordered lists.

c

b

a

d

[[c,d],[d,b],[a,b]]

Adjacency list

c

b

a

d a: [b]
b: [a,d]
c: [d]
d: [b,c]

There are many variants on adjacency lists. The most
common is the object-oriented adjacency list that stores
a list of adjacent vertices in each vertex object.

Adjacency list
Object-oriented adjacency list:

public class Vertex<T> {
 T label;
 List<Vertex<T>> neighbors = new SinglyLinkedList<>();
 …
}

c

b
a

d

(strictly speaking, c and d are references to Vertex objects)

label

neighbors

d

head tail

Vertex

SLL

Node Node

c b Ø

Adjacency list

a: []
b: [a,d]
c: []
d: [c]

This latter version is especially thrifty for directed graphs.

c

b
a

d

Activity

Write down both adjacency matrix and adjacency list
representations for this graph.

c

b
a

d

e

Which one is better for this graph? Why? (think Big-O)

Activity: connectedness
boolean connected():

How might I compute this using fundamental ops?

(adjacent, vertices, incident, degree, neighbors)

c

b
a

d

e

(note that graph is undirected)

Idea: breadth-first counting

Idea:

(suppose we know |G|)

boolean isConnected(Vertex start)

1. let count = 0
2. let Q be an empty queue
3. enqueue start
4. while Q not empty

a. dequeue v
b. count v
c. mark v as visited
d. put v’s unmarked neighbors in Q

5. if count = # of vertices in graph, return true else false

c

b

a

d

e

Q

count 0

e

Algorithm: connectedness
initialize algorithm

c

b

a

d

e

Q

count 0

dequeue v

Algorithm: connectedness

c

b

a

d

e

Q

count 1

count v

Algorithm: connectedness

c

b

a

d

e

Q

count 1

mark v

Algorithm: connectedness

c

b

a

d

e

Q

count 1

c

enqueue unmarked neighbors

Algorithm: connectedness

c

b

a

d

e

Q

count 1

dequeue v

Algorithm: connectedness

c

b

a

d

e

Q

count 2

count v

Algorithm: connectedness

c

b

a

d

e

Q

count 2

mark v

Algorithm: connectedness

c

b

a

d

e

Q

count 2

d

enqueue unmarked neighbors

Algorithm: connectedness

c

b

a

d

e

Q

count 2

dequeue v

Algorithm: connectedness

c

b

a

d

e

Q

count 3

count v

Algorithm: connectedness

c

b

a

d

e

Q

count 3

mark v

Algorithm: connectedness

c

b

a

d

e

Q

count 3

b a

enqueue unmarked neighbors

Algorithm: connectedness

c

b

a

d

e

Q

count 3

a

dequeue v

Algorithm: connectedness

c

b

a

d

e

Q

count 4

a

count v

Algorithm: connectedness

c

b

a

d

e

Q

count 4

a

mark v

Algorithm: connectedness

c

b

a

d

e

Q

count 4

a a

enqueue unmarked neighbors

Algorithm: connectedness

c

b

a

d

e

Q

count 4

a

dequeue v

Algorithm: connectedness

c

b

a

d

e

Q

count 5

a

count v

Algorithm: connectedness

c

b

a

d

e

Q

count 5

a

mark v

Algorithm: connectedness

c

b

a

d

e

Q

count 5

dequeue v (but don’t visit)

Algorithm: connectedness

c

b

a

d

e

Q

count 5 return 5 == 5
(true)

compute |G| == count

Algorithm: connectedness Recap & Next Class

Today we learned:

Next class:

Interesting graph problems

More graph definitions

Graph ADT operations

Graph representations

