CSCI 136: Data Structures and Advanced Programming Lecture 27 Graphs, part 2 Instructor: Dan Barowy

Williams

More graph definitions

Outline

More graph defs Graph ADT operations Graph representations

Reachability and Connectedness

"Siri, can I drive from Boston to Hong Kong?" "Siri, can I drive from any point to any other point?"

Reachability

A vertex **v** in **G** is **reachable** from vertex **u** in **G** if there is a **path** from **u** to **v**.

For an **undirected** graph **G**, **v** is **reachable** from vertex **u** iff **u** is **reachable** from vertex **v**.

Is **c reachable** from **d**? Yes.

(note that the connected component is itself a graph)

Adjacency matrix

An **adjacency matrix** is a data structure for representing a finite graph. It consists of a **square matrix** (usually implemented as an array of arrays). In the simplest case, the **elements** of the matrix indicate **whether an edge is present**. Elements on the diagonal are **defined as zero**.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix						
In an undirected graph , symmetric .	the	adj	acer	псу	mat	rix is
d		а	b	С	d	
C	а	0	1	0	0	
•	b	1	0	0	1	
	с	0	0	0	1	
b	d	0	1	1	0	

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from→to, is conventionally encoded in row-major form.

b

0

0

0

0

а

0

0

0

d

0

0

0

с

0

0 1

0

1

Adjacency matrix

In a **directed graph**, the adjacency matrix is **not symmetric** because edges are directed. A directed edge, from→to, is conventionally encoded in row-major form.

Adjacency matrix In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge,

from→to, is conventionally encoded in row-major form.

Activity: connectedness boolean connected(): How might I compute this using fundamental ops? (adjacent, vertices, incident, degree, neighbors)

(note that graph is undirected)

Recap & Next Class

Today we learned:

More graph definitions Graph ADT operations Graph representations Next class:

Interesting graph problems