CSCl 136:
Data Structures and
Advanced Programming
Lecture 27
Graphs, part 2

Instructor: Dan Barowy
Williams

Outline

More graph defs
Graph ADT operations
Graph representations

More graph definitions

Reachability and Connectedness

"Siri, can I drive from Boston to Hong Kong?"
"Siri, can I drive from any point to any other point?"

Reachability

A vertex v in G is reachable from vertex u in G if there is a path from u to v.

For an undirected graph G, v is reachable from vertex u iff u is reachable from vertex v.

Is c reachable from d? Yes.

Connectedness

An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u.

c
The set of all vertices reachable from v , along with all edges of G connecting any two of them, is called the connected component of v .
(note that the connected component is itself a graph)

Fundamental graph ADT operations

c
bool adjacent(Vertex u, Vextex v):
Given vertices u and v, are they adjacent?
(i.e., share an edge?)

Fundamental graph ADT operations

vertices(1) $=[\mathrm{a}, \mathrm{b}]$
vertices(2) $=[d, b]$

c

Vertex[] vertices(Edge e):

Given edge e, what are its end points?

Fundamental graph ADT operations

degree(a) $=2$
degree(c) $=0$

c
int degree(Vertex v):
Given vertex v how many vertices are adjacent?

Fundamental graph ADT operations

incident(a, 1) = true
incident(a, 2) = false

c
bool incident(Vertex v, Edge e):
Given vertex v and edge e, are they incident? (i.e., is v an endpoint of edge e?)

Fundamental graph ADT operations

neighbors(a) $=[\mathrm{d}, \mathrm{b}]$
neighbors(c) $=$ []

c

Vertex[] neighbors(Vertex v):
Given vertex v what other vertices are adjacent?

Graph representations

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

An adjacency matrix is a data structure for representing a finite graph. It consists of a square matrix (usually implemented as an array of arrays). In the simplest case, the elements of the matrix indicate whether an edge is present. Elements on the diagonal are defined as zero.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form.

Adjacency list

An adjacency list is a data structure for representing a finite graph. It consists of a list of unordered lists.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form.

Adjacency list

There are many variants on adjacency lists. The most common is the object-oriented adjacency list that stores a list of adjacent vertices in each vertex object.

a: [b]
b: [a,d]
c: [d]
d: [b,c]

Adjacency list

Object-oriented adjacency list

```
public class Vertex<T> {
    T label;
    List<Vertex<T>> neighbors = new SinglyLinkedList<>();
```

 \}

(strictly speaking, c and d are references to Vertex objects)

Adjacency list

This latter version is especially thrifty for directed graphs.

a: []
b: [a,d]
c: []
d: [c]

Activity

Write down both adjacency matrix and adjacency list representations for this graph.

Which one is better for this graph? Why? (think Big-O)

Activity: connectedness

boolean connected():
How might I compute this using fundamental ops?
(adjacent, vertices, incident, degree, neighbors)

(note that graph is undirected)

Idea: breadth-first counting
Idea:
(suppose we know |G|)
boolean isConnected(Vertex start)

1. let count $=0$
2. let Q be an empty queue
3. enqueue start
4. while Q not empty
a. dequeue v
b. count v
c. mark v as visited
d. put v's unmarked neighbors in Q
5. if count = \# of vertices in graph, return true else false

Algorithm: connectedness
initialize algorithm

count
0

2 | | \mathbf{e} | | |
| :--- | :--- | :--- | :--- |
| | | | |

Algorithm: connectedness count v

count
1
Q

Algorithm: connectedness
dequeue v

count
1
2

Algorithm: connectedness
enqueue unmarked neighbors

count
1

Q | \mathbf{c} | | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
count v

count
2
Q

Algorithm: connectedness
enqueue unmarked neighbors

count
2

Q | d | | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness

count
2
Q

Algorithm: connectedness
dequeue v

count
3

\mathbf{Q}| \mathbf{a} | | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
enqueue unmarked neighbors

count
3

q | b | a | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
count v

count

Q

Algorithm: connectedness
dequeue v

count

2 | \mathbf{a} | | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
enqueue unmarked neighbors

count

2 | \mathbf{a} | a | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
count v

count

2 | \mathbf{a} | | | |
| :--- | :--- | :--- | :--- |

Algorithm: connectedness
compute $|G|==$ count

count

return $5=5$
(true)

