CSCI 136:
Data Structures and
Advanced Programming
Lecture 26
Graphs, part 1
Instructor: Dan Barowy
Williams

Outline

Graph definitions

Graphs

Tons of Applications

Tons of Applications

Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?
(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)

Undirected graph

An undirected graph G is an abstract data type that consists of two sets:

- a set V of vertices (or nodes), and
- a set E of undirected edges.

A graph can be used to represent any structure in which pairs of elements are, in some sense, "related."

In an undirected graph, data can be associated either with a vertex, an edge, or both.

Example: vertex data = city; edge data = distance.
Undirected edges make sense here because the distance from Williamstown to Boston is the same as the distance from Boston to Williamstown.

Directed graph

A directed graph G is an abstract data type that consists of two sets:

- a set V of vertices (or nodes), and
- a set E of directed edges.

A directed graph can be used to represent any structure in which pairs of elements are "one-way related."

In a directed graph, data can be associated either with a vertex, an edge, or both.

Example: vertex data = people; edge data = "loves".
Directed edges make sense here because... unrequited love. See (countless) examples from popular culture.

Walking a graph

A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

- A walk starts and ends with a vertex.
- A walk can travel over any edge and any vertex any number of times.
- If no edge appears more than once, the walk is a path.
- If no vertex appears more than once, the walk is a simple path.

Directed graph

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$

Walking in circles

A closed walk in a graph $G=(V, E)$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that each $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (no repeated edges)
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (no repeated vertices except v_{0})
-The length of a walk is the number of edges in the sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of the arrows.

There is no directed walk from b to a .

Useful theorems
 (about undirected graphs)

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u).
- If there is a path from u to v, then there is a simple path from \mathbf{u} to v (and v to u).
- Every circuit through v contains a cycle through v.
-Not every closed walk through v contains a cycle through \mathbf{v}.

Degree on Digraphs

The in-degree of a vertex v is the number of incoming edges incident to v.
Denoted: in-deg (v)

What is the in-degree of c ? of a ?

Degree on Digraphs

The out-degree of a vertex v is the number of outgoing edges incident to v.

Denoted: out-deg (v)

What is the out-degree of c ? of a ?

Walk:
Path:
Simple path:
ex:
Closed Walk:
Circuit
ex:
Cycle:
ex:
Degree:
Max Degree Vertex:
Min Degree Vertex:

Degree theorem

For any graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where |E| is the number of edges in G.
Proof: by induction on |E|.
Hint: How does removing an edge change the equation?

Recall the example from our first class

By avoiding left turns whenever possible, UPS estimates to save:
10 million
gallons of fuel a year

6
fewer miles driven per route

(equivalent to 21,000 cars taken off the road)

A study on crash factors in intersection-related accidents from the US National Highway Traffic Safety Association shows that turning left is one of the leading "critical pre-crash events" ... About 61 percent of crashes that occur while turning or crossing an intersection involve left turns, as opposed to just 3.1 percent involving right turns.

Finding Shortest Paths

Data: road segments
road segment: (source, destination, length)
Input: source, destination
Output: shortest path
path: (segment $1_{1}, .$. , segmentn)
The Algorithm: Dijkstra's Algorithm
Data structures:
graph: essential representation of a "road network" priority queue: ordered set of next roads to try also uses: lists, arrays, stacks, ...

Recap \& Next Class

Today we learned:

Graph definitions

Next class:

Graph ADT operations
Graph representations
Interesting graph problems

Dijkstra's Algorithm

