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Graphs, part 1

Outline

Graph definitions

Graphs

Tons of Applications

Nodes = subway stops;  Edges = track between stops
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Tons of Applications

Nodes = cities;  Edges = rail lines connecting cities

Tons of Applications
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Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?
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(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)
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A “wireframe” model

Undirected graph
An undirected graph G is an abstract data type that 
consists of two sets: 

• a set V of vertices (or nodes), and 
• a set E of undirected edges. 

A graph can be used to represent any structure in which 
pairs of elements are, in some sense, “related.” 

In an undirected graph, data can be associated either with 
a vertex, an edge, or both. 

Example: vertex data = city; edge data = distance. 

Undirected edges make sense here because the distance 
from Williamstown to Boston is the same as the distance 
from Boston to Williamstown.

Undirected graph
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G = (V, E)



Directed graph

A directed graph G is an abstract data type that consists 
of two sets: 

• a set V of vertices (or nodes), and 
• a set E of directed edges. 

A directed graph can be used to represent any structure in 
which pairs of elements are “one-way related.” 

In a directed graph, data can be associated either with a 
vertex, an edge, or both. 

Example: vertex data = people; edge data = “loves”. 

Directed edges make sense here because… unrequited 
love.  See (countless) examples from popular culture.

Directed graph
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G = (V, E)

Walking a graph

A walk from u to v in a graph G = (V, E) is an alternating 
sequence of vertices and edges 

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that ei = {vi , vi+1} for i = 1, ... , k 

•A walk starts and ends with a vertex. 

•A walk can travel over any edge and any vertex any 
number of times. 

• If no edge appears more than once, the walk is a path. 

• If no vertex appears more than once, the walk is a 
simple path.

Walking in circles

A closed walk in a graph G = (V, E) is a walk 

v0, e1, v1, e2, v2, ... , vk-1, ek, vk
such that each v0 = vk 

•A circuit is a path where v0 = vk (no repeated edges) 

•A cycle is a simple path where v0  =  vk  (no repeated 
vertices except v0) 

•The length of a walk is the number of edges in the 
sequence.



Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction 
of the arrows.
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There is no directed walk from b to a.

Useful theorems

• If there is a walk from u to v, then there is a walk from v 
to u. 

• If there is a walk from u to v, then there is a path from u 
to v (and from v to u). 

• If there is a path from u to v, then there is a simple path 
from u to v (and v to u). 

•Every circuit through v contains a cycle through v. 

•Not every closed walk through v contains a cycle 
through v.

(about undirected graphs)

Degree

The degree of a vertex v is the number of edges incident 
to v. 

Denoted: deg(v)
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What is the degree of c? of a?

Degree on Digraphs

The in-degree of a vertex v is the number of incoming 
edges incident to v. 

Denoted: in-deg(v)

What is the in-degree of c? of a?
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Degree on Digraphs

The out-degree of a vertex v is the number of outgoing 
edges incident to v. 

Denoted: out-deg(v)

What is the out-degree of c? of a?
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Degree theorem

For any graph G = (V, E)

deg(v)
v∈V
∑ = 2 |E |

Proof: by induction on |E|.

Hint: How does removing an edge change the equation?

where |E| is the number of edges in G.

Activity

Walk: 
    ex: 

Path: 
    ex: 

Simple path: 
    ex: 

Closed Walk: 
    ex: 

Circuit: 
    ex: 

Cycle: 
    ex: 

Degree: 
    Max Degree Vertex: 
    Min Degree Vertex:
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Recall the example 
from our first class
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A study on crash factors in intersection-related accidents 
from the US National Highway Traffic Safety Association 

shows that turning left is one of the leading "critical pre-crash 
events" … About 61 percent of crashes that occur while turning 

or crossing an intersection involve left turns, as opposed to 
just 3.1 percent involving right turns. 

source: cnn.com



Finding Shortest Paths

Data: road segments 
road segment: (source, destination, length) 

Input: source, destination 

Output: shortest path 
path: (segment1, …, segmentn) 

The Algorithm: Dijkstra’s Algorithm 

Data structures: 
graph: essential representation of a “road network” 

priority queue: ordered set of next roads to try 

also uses: lists, arrays, stacks, …

Dijkstra’s Algorithm

Recap & Next Class

Today we learned:

Next class:

Graph ADT operations 

Graph representations 

Interesting graph problems

Graph definitions


