
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 26

Graphs, part 1

Outline

Graph definitions

Graphs

Tons of Applications

Nodes = subway stops; Edges = track between stops

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Tons of Applications

Nodes = cities; Edges = rail lines connecting cities

Tons of Applications

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)

Tons of Applications Tons of Applications

A “wireframe” model

Undirected graph
An undirected graph G is an abstract data type that
consists of two sets:

• a set V of vertices (or nodes), and
• a set E of undirected edges.

A graph can be used to represent any structure in which
pairs of elements are, in some sense, “related.”

In an undirected graph, data can be associated either with
a vertex, an edge, or both.

Example: vertex data = city; edge data = distance.

Undirected edges make sense here because the distance
from Williamstown to Boston is the same as the distance
from Boston to Williamstown.

Undirected graph

d

a

b

c

G = (V, E)

Directed graph

A directed graph G is an abstract data type that consists
of two sets:

• a set V of vertices (or nodes), and
• a set E of directed edges.

A directed graph can be used to represent any structure in
which pairs of elements are “one-way related.”

In a directed graph, data can be associated either with a
vertex, an edge, or both.

Example: vertex data = people; edge data = “loves”.

Directed edges make sense here because… unrequited
love. See (countless) examples from popular culture.

Directed graph

d

a

b

c

G = (V, E)

Walking a graph

A walk from u to v in a graph G = (V, E) is an alternating
sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that ei = {vi , vi+1} for i = 1, ... , k

•A walk starts and ends with a vertex.

•A walk can travel over any edge and any vertex any
number of times.

• If no edge appears more than once, the walk is a path.

• If no vertex appears more than once, the walk is a
simple path.

Walking in circles

A closed walk in a graph G = (V, E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk
such that each v0 = vk

•A circuit is a path where v0 = vk (no repeated edges)

•A cycle is a simple path where v0 = vk (no repeated
vertices except v0)

•The length of a walk is the number of edges in the
sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction
of the arrows.

d

a

b

c

There is no directed walk from b to a.

Useful theorems

• If there is a walk from u to v, then there is a walk from v
to u.

• If there is a walk from u to v, then there is a path from u
to v (and from v to u).

• If there is a path from u to v, then there is a simple path
from u to v (and v to u).

•Every circuit through v contains a cycle through v.

•Not every closed walk through v contains a cycle
through v.

(about undirected graphs)

Degree

The degree of a vertex v is the number of edges incident
to v.

Denoted: deg(v)

d

a

b

c

What is the degree of c? of a?

Degree on Digraphs

The in-degree of a vertex v is the number of incoming
edges incident to v.

Denoted: in-deg(v)

What is the in-degree of c? of a?

d

a

b

c

Degree on Digraphs

The out-degree of a vertex v is the number of outgoing
edges incident to v.

Denoted: out-deg(v)

What is the out-degree of c? of a?

d

a

b

c

Degree theorem

For any graph G = (V, E)

deg(v)
v∈V
∑ = 2 |E |

Proof: by induction on |E|.

Hint: How does removing an edge change the equation?

where |E| is the number of edges in G.

Activity

Walk:
 ex:

Path:
 ex:

Simple path:
 ex:

Closed Walk:
 ex:

Circuit:
 ex:

Cycle:
 ex:

Degree:
 Max Degree Vertex:
 Min Degree Vertex:

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

BostonPortland

Philadelphia

Recall the example
from our first class

7

A study on crash factors in intersection-related accidents
from the US National Highway Traffic Safety Association

shows that turning left is one of the leading "critical pre-crash
events" … About 61 percent of crashes that occur while turning

or crossing an intersection involve left turns, as opposed to
just 3.1 percent involving right turns.

source: cnn.com

Finding Shortest Paths

Data: road segments
road segment: (source, destination, length)

Input: source, destination

Output: shortest path
path: (segment1, …, segmentn)

The Algorithm: Dijkstra’s Algorithm

Data structures:
graph: essential representation of a “road network”

priority queue: ordered set of next roads to try

also uses: lists, arrays, stacks, …

Dijkstra’s Algorithm

Recap & Next Class

Today we learned:

Next class:

Graph ADT operations

Graph representations

Interesting graph problems

Graph definitions

