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Recall: Priority Queues

Priority Queue

A priority queue is an abstract data type that returns the 
elements in priority order.  Under priority ordering, an 
element e with a higher priority (an integer) is returned 
before all elements L having lower priority, even if that e 
was enqueued after all L.  When any two elements have 
equal priority, they are returned in first-in, first-out order 
(i.e., in the order in which they were enqueued).

Note

I will refer here to the maximum priority.  But you could 
also refer to minimum priority.  All that matters is that you 
order your data with respect to some extremum.
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Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: extract

Priority Queue: Operations

insert: inserts an element with a given 
priority value. Ensures that the next 
element of the queue is in priority order.  
Like enqueue.

0 1 2 3

Priority Queue: Operations

find-max: returns the next element with 
a highest priority value. Like peek, does 
not modify the queue.  

0 1 2 3

Priority Queue: Operations

extract: removes and returns the next 
element with a maximum priority value. 
Like dequeue.
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Priority Queue

How to implement?

Vector: 
find-max: O(1) 
insert: O(n) 
extract: O(n)

Heap: 
find-max: O(1) 
insert: O(log n) 
extract: O(log n)

BinarySearchTree: 
find-max: O(n) 
insert: O(n) 
extract: O(n)

Priority Queue

Is it necessary to keep the 
entire queue in sorted order?

Operations:

find-max 
insert 

extract

Heaps

Max Heap

A max heap is a tree-based data structure that returns its 
elements in priority order. A heap maintains the max 
heap property: for any given node n, if p is a parent node 
of n, then the key of p is ≥ to the key of n.

A max heap is a tree whose root is the maximum 
element and whose subtrees are, themselves, heaps.



Is this a binary search tree?

No.  Nodes do not obey binary search property.
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(Binary) max heap
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Max heap property: for any given node n, if p is a 
parent node of n, then the key of p is ≥ the key of n.

Insertion
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A binary heap is usually implemented as an always-
complete binary tree.

Insertion
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Suppose we want to insert a new node, 78



Insertion

First, insert the new node at the first available 
position in the tree that maintains completeness.
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Insertion

Next, compare the new node with its parent.
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Insertion

If the max heap property is violated, swap.
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Insertion

Continue swapping the new node with parents until 
the max heap property is satisfied.
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Insertion

Continue swapping the new node with parents until 
the max heap property is satisfied (parent ≥ node or 
no parents remain).
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Insertion

The swapping procedure performed on insert is 
often referred to as heap-up or percolate-up.
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Find-max

To find the maximum element in a max heap, 
simply return the root.
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Extract

To remove and return the maximum element in a 
max heap, first perform find-max.
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Extract

Temporarily store the max element.
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Extract

Replace the root with the last element in the 
complete tree.
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Extract

Replace the root with the last element in the 
complete tree.
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Extract

Compare the root with its children.  Swap the root 
with the largest element.
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Extract
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Compare the root with its children.  Swap the root 
with the largest element.

23 ≥ 42 ?

No.

Extract

Continue swapping until the max heap property is 
satisfied (parent ≥ node or no parents remain).
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Extract

Return the saved maximum element.
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The swapping procedure performed on extract is 
often referred to as heap-down or percolate-down.



Activity
Build a max heap from the following elements:

56 5 57 0 -7 99

But store the elements in an array (i.e., an implicit 
binary tree).  Process nodes from left to right.

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

Implementation

A binary heap is often implemented using an implicit 
binary tree data structure.  In other words, heap 
nodes are actually stored in an array or vector.

Advantages: 
find-max: O(1) 
insert: O(log n) 
extract: O(log n)

0 1 2 3 4 5 6 7

99 5 57 0 -7 56

left child right child

Lots of interesting variants on heaps!

From Wikipedia: priority queue page.

Recap & Next Class

Today we learned:

Next class:

Graphs

Priority queues 

Heaps


