
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 25

Trees, part 5

Announcements

Office hours today: 5-7pm

1st years: academic advising.

Pre-registration info session: 4-5pm,
Wege Auditorium

Speaker: Steve Lombardi from
Oculus, 2:30-4pm, Wege Auditorium

Outline

Review: Priority queues

Heaps
Quiz

Recall: Priority Queues

Priority Queue

A priority queue is an abstract data type that returns the
elements in priority order. Under priority ordering, an
element e with a higher priority (an integer) is returned
before all elements L having lower priority, even if that e
was enqueued after all L. When any two elements have
equal priority, they are returned in first-in, first-out order
(i.e., in the order in which they were enqueued).

Note

I will refer here to the maximum priority. But you could
also refer to minimum priority. All that matters is that you
order your data with respect to some extremum.

Blue letter

Priority Queue

0 1 2 3

Ordinary letter Blue letter

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: extract

Priority Queue: Operations

insert: inserts an element with a given
priority value. Ensures that the next
element of the queue is in priority order.
Like enqueue.

0 1 2 3

Priority Queue: Operations

find-max: returns the next element with
a highest priority value. Like peek, does
not modify the queue.

0 1 2 3

Priority Queue: Operations

extract: removes and returns the next
element with a maximum priority value.
Like dequeue.

0 1 2 3

Priority Queue

How to implement?

Vector:
find-max: O(1)
insert: O(n)
extract: O(n)

Heap:
find-max: O(1)
insert: O(log n)
extract: O(log n)

BinarySearchTree:
find-max: O(n)
insert: O(n)
extract: O(n)

Priority Queue

Is it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert

extract

Heaps

Max Heap

A max heap is a tree-based data structure that returns its
elements in priority order. A heap maintains the max
heap property: for any given node n, if p is a parent node
of n, then the key of p is ≥ to the key of n.

A max heap is a tree whose root is the maximum
element and whose subtrees are, themselves, heaps.

Is this a binary search tree?

No. Nodes do not obey binary search property.

42

3 23

1 0 -1

(Binary) max heap

42

3 23

1 0 -1

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is ≥ the key of n.

Insertion

42

3 23

1 0 -1

A binary heap is usually implemented as an always-
complete binary tree.

Insertion

42

3 23

1 0 -1

Suppose we want to insert a new node, 78

Insertion

First, insert the new node at the first available
position in the tree that maintains completeness.

78

42

3 23

1 0 -1

Insertion

Next, compare the new node with its parent.

78

42

3 23

1 0 -1

23 ≥ 78 ?

No.

23

Insertion

If the max heap property is violated, swap.

42

3

1 0 -1

23 ≥ 78 ?

No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied.

42

3

1 0 -1

42 ≥ 78 ?

No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied (parent ≥ node or
no parents remain).

423

1 0 -1

42 ≥ 78 ?

No.

78

23

Insertion

The swapping procedure performed on insert is
often referred to as heap-up or percolate-up.

423

1 0 -1

42 ≥ 78 ?

No.

78

23

Find-max

To find the maximum element in a max heap,
simply return the root.

423

1 0 -1

7878

23

Extract

To remove and return the maximum element in a
max heap, first perform find-max.

423

1 0 -1

7878

23

Extract

Temporarily store the max element.

423

1 0 -1

78

23

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

23

Extract

Compare the root with its children. Swap the root
with the largest element.

423

1 0 -1

78

23
23 ≥ 42 ?

No.

Extract

42

3

1 0 -1

78 23

Compare the root with its children. Swap the root
with the largest element.

23 ≥ 42 ?

No.

Extract

Continue swapping until the max heap property is
satisfied (parent ≥ node or no parents remain).

42

3

1 0 -1

78

23 ≥ -1 ?

Yes.
23

Extract

Return the saved maximum element.

42

3

1 0 -1

78 23

Extract

42

3

1 0 -1

23

The swapping procedure performed on extract is
often referred to as heap-down or percolate-down.

Activity
Build a max heap from the following elements:

56 5 57 0 -7 99

But store the elements in an array (i.e., an implicit
binary tree). Process nodes from left to right.

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

Implementation

A binary heap is often implemented using an implicit
binary tree data structure. In other words, heap
nodes are actually stored in an array or vector.

Advantages:
find-max: O(1)
insert: O(log n)
extract: O(log n)

0 1 2 3 4 5 6 7

99 5 57 0 -7 56

left child right child

Lots of interesting variants on heaps!

From Wikipedia: priority queue page.

Recap & Next Class

Today we learned:

Next class:

Graphs

Priority queues

Heaps

