
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 23

Trees, part 3

Announcements

One-on-one: who’s missing?

IntelliJ IDEA tutorial on website

Outline

Traversals

Binary search tree
Binary tree traversals

Binary tree traversals

Suppose you are asked to write an Iterator<T> for a
binary tree. What order do you choose?

Remember that tree nodes store data (T). A traversal
corresponds with the order that data is returned.

a

b c

d e f g

Binary tree traversals

Pre-order traversal: Return data from each node before
its children, and then return child data from left to right.

a

b c

d e f g

1

2

3 4

5

6 7

Returns the sequence: a,b, d, e, c, f, g

Binary tree traversals

In-order traversal: Return data from each node after its
left child and before its right child.

a

b c

d e f g1

2

3

4

5

6

7

Returns the sequence: d,b, e, a, f,c, g

Binary tree traversals

Post-order traversal: Return data from each node after its
children; return child data from left to right.

a

b c

d e f g1 2

3

4 5

6

7

Returns the sequence: d,e, b, f, g,c, a

Binary tree traversals

Level-order traversal (aka breadth-first order): Return
data from each node in level i before data in level i+1.

a

b c

d e f g

1

2 3

4 5 6 7

Returns the sequence: a,b, c, d,e, f,g

Level 0

Level 1

Level 2

2 4

Activity: What traversal should I use?

Suppose I encode the arithmetic expression 1 - 24 × 2
using the following tree.

-

1 ×

^ 2

Ordered Trees

Binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or
removed. In other words, the key in each node:

•must be ≥ any key stored in the left subtree, and
•must be ≤ any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Key, Value nodes

Note that I said key instead of element.

Storing a key and a value in each node allows the
greatest flexibility when arranging a tree. I.e., the key type
K need not be the value type V.

Restriction: keys must be comparable in some way (e.g.,
Comparable<K> or Comparator<K>).

Example

Insert the following elements: 71,20,27,17,91,14,87

Assume K and V are the same.

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

27 27

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

27

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

27

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

8727

Example

Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

Activity

Insert the following elements:

Assume K and V are the same.

Let’s implement add, and toString (printing in-order).

Binary Search Tree

How might we implement an in-order iterator?

Binary Search Tree

1. If there is a right side, go right, then go as far left as
possible.

2. Otherwise, find the first parent of a left node.
3. If there are no more parents, there are no more

elements.

In-order Iterator cases

Invariant: the current node is always the
leftmost unvisited node.

Recap & Next Class

Today we learned:

Next class:
Asymptotic performance for trees

Priority queues

Binary tree traversals

Binary search trees

