CSCl 136:
Data Structures
and
Advanced Programming
Lecture 20
Ordered Structures
Instructor: Dan Barowy
Williams

If you're in the tails, I am happy to talk.

Announcements
No Barowy office hours this Friday PRE-LAB o: due tonight

PRE-LAB 1: due in Lab on Wed
One-on-one meetings
Feedback: thank you

Ambivalent/negative? Happy to discuss.

Least popular features

Pop quizzes
Random partners

Purpose of quizzes

To incentivize reading before class.

Outline

1. Ordered structures (cont'd)
2. Infix to postfix algorithm

Recall

We want a data structure that has the same API as other structures (e.g., Vector, List, etc.) but that also keeps itself ordered all the time.

This is what we call an ordered structure.

Should be possible

Simple inductive proof.
Start with an empty data structure.

FooStructure
Is FooStructure ordered? Yes.

Should be possible

Simple inductive proof.
Add an element (any element). Insert it in order.

FooStructure
Is FooStructure ordered? Yes.

Should be possible

Simple inductive proof.
Add another element (any element). Insert it in order.

FooStructure
Is FooStructure ordered? Yes.

Should be possible

Simple inductive proof.
Add another element (any element). Insert it in order.

FooStructure

Is FooStructure ordered? Yes.

Should be possible

Simple inductive proof.
Add another element (any element). Insert it in order.

FooStructure
Is FooStructure ordered? Yes.

OrderedStructure

Recall: we will implement an OrderedStructure to signal our intent that the structure should always be ordered.

Recall: its elements must have a special property: they are Comparable<T>.

OrderedVector

What is the biggest limitation of an OrderedVector?
How might you overcome that limitation?

OrderedVector

Let's resume implementing an OrderedVector.
(code)

Shunting yard algorithm

Shunting yard algorithm

Converts infix expressions to postfix expressions.

Recall the hand-wavy method I gave before.

This one is better.

Utilizes a stack and a queue.

Shunting yard algorithm

Invented by Edsger Dijkstra in 1961 while he was working on the ALGOL programming language.

Won the Turing Award in 1972 for his work on ALGOL and many, many, many other things.

Shunting yard algorithm

Shunting yard algorithm

Shunting yard algorithm

Pseudocode (slightly simplified):
while there are tokens to be read:
read a token.
if the token is a number, then:
push it to the output queue
if the token is an op, then:
while ((there is an operator at the top of the op stack with greater precedence) or
(the op at the top of the op stack has equal precedence and
is left associative))
pop ops from the op stack onto the output queue.
if push it onto the op stack.
while there are still op tokens on the stack:
pop the op from the op stack onto the output queue.
exit.

Shunting yard algorithm

Example: $3+4 \times 2$

Example: $3+4 \times 2$

Example: $3+4 \times 2$

Example: $3+4 \times 2$

3	4	2

Recap \& Next Class

Today we learned:
Ordered structures
Shunting yard algorithm
Next class:

Trees

