
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 19

Ordered Structures

Outline

1. Mid-semester eval.

2. Resubmission procedure

3. Ordered structures

4. Infix to postfix algorithm

Mid-semester evaluation Resubmission procedure

Resubmission procedure

Remember: the goal of this
course is mastery.

Allows you to earn up to 50%
of the lost points.

E.g., if you got a 50% on the midterm,
you can get a 75% on resubmission.

Midterm is 20% of your final grade.
This is worth doing!

Resubmission procedure

1. You have two weeks from
tomorrow (your exam will be in
my box by tomorrow).

2. Resubmission must include
both the original work and the
new submission.

3. Must be accompanied by an
explanation document, written
in plain English.

Resubmission procedure

1. What the mistake is.
2. How you fixed the mistake.
3. Why the new version is correct.

Resubmission procedure

Explanation document must identify:

Resubmission procedure

Please submit this on paper
(put it in my box in the CS department).

Resubmission procedure
Sample:

Ordered structures

structure5 Stack implementations

structure in structure5

A structure is an interface for a “traversable” collection of
objects. In other words, it represents a class that contains
some number of elements, and those elements can be
iterated, added, and removed. Membership and size can
also be checked.

Most of the data structures we discuss in this class
implement structure.

structure in structure5

public interface Structure<E> extends Iterable<E>
{
 public int size();
 public boolean isEmpty();
 public void clear();
 public boolean contains(E value);
 public void add(E value);
 public E remove(E value);
 public java.util.Enumeration elements();
 public Iterator<E> iterator();
 public Collection<E> values();
}

Question for you

Why is a structure interface a good idea? What benefit
do we get from having it?

One reason

Suppose we write a method that takes a structure. We
could give it an instance of any data structure that
implements the structure interface.

E.g., we could iterate over the elements and print them
because all structures have the iterator() method.

What about order?

Does the structure interface require that elements be
ordered?

structure in structure5

public interface Structure<E> extends Iterable<E>
{
 public int size();
 public boolean isEmpty();
 public void clear();
 public boolean contains(E value);
 public void add(E value);
 public E remove(E value);
 public java.util.Enumeration elements();
 public Iterator<E> iterator();
 public Collection<E> values();
}

Does the structure interface require that elements be
ordered?

No.

Is order a property that could be enforced using
interfaces?

No. Order is a data-dependent property, so there’s no
way to check whether something is ordered until runtime.

What about order?

Nonetheless, we can signal our intent with an interface.

How would we write an OrderedStructure interface?

OrderedStructure

Do its elements need to have any special property? (i.e.,
how would we compare them?)

Let’s try to write this.

(code)

Let’s try implementing an OrderedVector.

OrderedVector

(code)

How do we figure out where add should insert?

OrderedVector

Binary search to the rescue.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Want to know whether the array contains the
value 322, and if so, what its index is.

Binary search is a divide-and-conquer
algorithm that solves this problem.

Binary search is fast: in the worst case, it
returns an answer in O(log2n) steps.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Important precondition: array must be sorted.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

322 = 365? no

322 < 365? yes

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

322 = 101? no

322 < 101? no

322 > 101? yes

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

Binary search

100 101 322 365

0 1 2 3

423 478 499 504

4 5 6 7

Looking for the value 322.

322 = 322? yes

return 2

Recap & Next Class

Today we learned:

Next class:

More about ordered structures,

Shunting yard,

Trees

Ordered structures

