
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 17

Linear structures

Announcements

Midterm exam: will return graded exams via
GLOW, Tues or Wed

PRE-LAB 0: due today by 5pm

I hope you had a great spring break!

Outline

1. Abstract Data Types

2. Linear ADTs

3. Stack

4. Queue

Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of
data s t ructures (e .g . , implementat ion deta i ls ,
programming language). Instead, ADTs contain only
essential properties and are concisely defined by their
logical behavior over a set of values and a set of
operations.

In an ADT, precisely how data is represented on a
computer does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on
a computer matters a lot. Simple data structures are
often composed of simple representations, like primitives,
while more complex data structures are composed of
other data structures.

ADT example: Linked List

A linked list is a linear collection of data elements, whose
order is not necessarily given by their placement in
memory. Each element is stored in a node that points to
the next node. Elements may store any type of value. A
list supports inserting, searching for, and deleting any
value in a list, although not necessarily efficiently.

•SinglyLinkedList  
 

•DoublyLinkedList  
 

•CircularList  
 

•Vector

DS example: Linked List
We have seen many implementations of linked lists and
discussed their performance tradeoffs. For example:

100 101 102 Ø

100 101 102 Ø

100 101 102

100 101 102

0 1 2 3

ADTs cannot be expressed in Java

At least not directly.

Instead, Java uses types to stand in for ADTs.

Because types in Java are often bound to an
implementation, Java provides two mechanisms for
programmers to use a type without depending on a
mechanism: interfaces and abstract classes.

Interface

An interface defines boundary between two systems
across which they share information. An interface is a
contract: calling a method defined in an interface returns
the data as promised.

Because an interface contains no implementation,
programmers who use them cannot rely on accidental
implementation details.

E.g., the List interface states that there must be an add
method but does not say how it is implemented.

Abstract class

An abstract class is a partial implementation, mainly used
as a labor-saving device.

E.g., many List implementations will implement methods
the same way. Why duplicate all that work?

isEmpty() can always be implemented by checking that
size() == 0.

structure5 List implementations Missing from Java: ADT behavior

Java prov ides no way of speci fy ing behavior
independently of implementation.

E.g., a List interface might require

public void prepend(T elem)

But there’s no way to require that the implementation
actually place the element at the head of the list.

Next best thing: assert statements

This is why we encourage you to write pre- and post-
conditions.

E.g.,

public void prepend(T elem) {
 T oldHead = head();
 …
 Assert.post(head().next() == oldHead)
}

Linear ADT

A linear ADT is one that presents elements in a sequence,
even if the elements are not actually stored that way.

We will talk about two today: stack and queue.

Stack ADT

A stack is an abstract data type that stores a collection of
any type of element. A stack restricts which elements
are accessible: elements may only be added and
removed from the "top" of the collection. The "push"
operation places an element onto the top of the stack
while a "pop" operation removes an element from the top.

Stack ADT

Stack ADT

Also sometimes referred to as a LIFO: “last in, first out.”

We also frequently include a "peek" operation that lets us
look at an element on the top of a stack without removing
it, and "size" and “isEmpty" operations that let us check
how many elements are stored and whether a stack stores
zero elements, respectively.

Stack ADT

Interesting history: first
appeared in print in a
paper by Alan Tur ing
(1946).

Unclear if he actually
invented it.

push = bury,
pop = unbury.

structure5 Stack implementations Application: Arithmetic

A computer can perform arithmetic using a stack.

E.g., 1 * 2 + 3 = 5

Small problem: order of ops in infix arithmetic depends on
ops.

In postfix arithmetic, order is always the same: left to right

E.g., 1 2 * 3 +

Once in this form, processing is easy. (Example)

Activity: Arithmetic

Convert infix to postfix: x*y+z*w

1. Add parens to preserve order of operations:
 ((x*y)+(z*w))
2. Move all operators to the end of each parenthesized
expression:
 ((xy*)(zw*)+)
3. Remove parens:
 xy*zw*+

Evaluate these using a stack:

1. 1 + 2 * 3
2. 5 * (6 + 2) - 12 / 4

Cool application: backtracking search

Stack implementations

StackArray

A StackArray is a stack implemented using an array for
element storage.

Pros: push and pop are O(1) operations.

Cons: data structure has a maximum capacity.

Stack implementations
StackVector

A StackVector is a stack implemented using a Vector for
element storage.

Pros: push and pop are amortized O(1) operations. There is
no maximum capacity.

Cons: Most of the time, they take O(1) time, but
occasionally--when the underlying array needs to grow--an
O(n) cost is incurred. This may be fine for most applications,
but if the application cannot tolerate wide variation in time,
this is a bad choice. Also, unless the underlying array is
completely full, Vectors waste some space.

Stack implementations

StackList

A StackList is a stack implemented using a List (usu. SLL) for
element storage.

Pros: push and pop are O(1) operations. There is no
maximum capacity. Push and pop costs are predictable
(always the same), unlike StackVector.

Cons: because of the way computer hardware is
implemented, a StackList's constant-time cost is likely to be
much higher than a StackVector's. So a StackList's
performance may be more predictable than a StackVector,
but it will likely be slower on average.

Queue ADT

A queue is an abstract data type that stores a collection
of any type of element. A queue restricts which
elements are accessible: elements may only be added to
the "end" of the collection and elements may only be
removed from the "front" of a collection. The "enqueue"
operation places an element at the end of a queue while a
"dequeue" operation removes an element from the front.

Queue ADT Queue ADT

Also sometimes referred to as a FIFO: “first in, first out.”

We also frequently include a "peek" operation that lets us
look at an element on the top of a queue without
removing it, and "size" and “isEmpty" operations that let us
check how many elements are stored and whether a
queue stores zero elements, respectively.

(a stack would be an annoying way to process a line at
Starbucks!)

Frequently used as a buffer to hold work to do later.

Queue implementations

QueueArray

A QueueArray is a queue implemented using an array for
element storage.

Pros: enqueue and dequeue are O(1) operations.

Cons: data structure has a maximum capacity.

Queue implementations
QueueVector

A QueueVector is a queue implemented using a Vector for
element storage.

Pros: enqueue and dequeue are amortized O(1) operations.
There is no maximum capacity.

Cons: Most of the time, they take O(1) time, but
occasionally--when the underlying array needs to grow--an
O(n) cost is incurred. This may be fine for most applications,
but if the application cannot tolerate wide variation in time,
this is a bad choice. Also, unless the underlying array is
completely full, Vectors waste some space.

Queue implementations
QueueList

A QueueList is a queue implemented using a List (usu. DLL
or CL) for element storage.

Pros: enqueue and dequeue are O(1) operations. There is no
maximum capacity. Enqueue and dequeue costs are
predictable (always the same), unlike QueueVector.

Cons: because of the way computer hardware is
implemented, a QueueList's constant-time cost is likely to
be much higher than a QueueVector's. So a QueueList's
performance may be more predictable than a QueueVector,
but it will likely be slower on average.

Recap & Next Class

Today we learned:

Next class:

ADTs

Linear ADTs

Stack

Queue

Iterators, etc.

