CSCI 136: Data Structures and Advanced Programming

Lecture 16

Search

Instructor: Dan Barowy

Williams

Announcements

Midterm exam

Wednesday during your lab period in assigned lab

Exam review session: Tonight 7-8pm in TCL 202

No class Wednesday

No class Friday

We are going to try to get Lab 4 back before Wed

Outline

Search

Binary search

Want to know **whether** the array contains the value **322**, and if so, what its **index** is.

Binary search is a **divide-and-conquer** algorithm that solves this problem.

Binary search is **fast**: in the **worst case**, it returns an answer in **O(log₂n)** steps.

Important precondition: array must be sorted.

Binary search

Looking for the value 322.

Binary search

Looking for the value 322.

Binary search

Looking for the value 322.

Looking for the value 322.

Binary search

Looking for the value 322.

322 = 365? **no**

322 < 365? **yes**

Binary search

Looking for the value 322.

Binary search

Looking for the value 322.

Binary search Looking for the value 322. 100 101 322 365 423 478 499 504 0 1 2 3 4 5 6 7

Binary search

(code)

Binary search

```
public static int search(int[] a, int value) {
    return searchRec(a, value, 0, a.length - 1);
}

protected static int searchRec(int[] a, int value, int low, int high) {
    if (low > high) {
        return -1;
    }
    int mid = (high - low)/2 + low;
    if (value == a[mid]) {
        return mid;
    } else if (value < a[mid]) {
        return searchRec(a, value, low, mid - 1);
    } else {
        return searchRec(a, value, mid + 1, high);
    }
}</pre>
```

Binary search is **fast**: in the **worst case**, it returns an answer in **O(log₂n)** steps.

How can we **prove** this claim?

Principle of Mathematical Induction (weak induction)

Let **P(n)** be a **predicate** that is defined for **integers n**, and let **a** be a **fixed integer**.

If the following two statements are true:

- 1. **P(a)** is **true**.
- 2. For all integers $k \ge a$, if P(k) is true then P(k + 1) is true.

then the statement

for all integers n ≥ a, P(n) is true

is **also true**.

Principle of Mathematical Induction (strong induction)

Let **P(n)** be a **predicate** that is defined for **integers n**, and let **a** be a **fixed integer**.

If the following two statements are **true**:

- 1. **P(a)** is **true**.
- 2. Whenever P(0),P(1),...,P(k) are true then P(k + 1) is true.

then the statement

for all integers n ≥ a, P(n) is true

is **also true**.

Binary search

(proof)

(code: count calls)

Recap & Next Class

Today we learned:

Search

Next class:

Midterm