
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 15

Sorting, part 3

Announcements
Midterm exam:

• During your normal lab period

• You will have 1 hour, 45 minutes if you come on time.

• Closed book

• Covers readings from Bailey Ch. 1-7 & 9

• Stuff in class up to today.

Regular class on Monday

Short class on Wed: last chance to ask questions.

Exam review session: Monday 7-8pm in TCL 202

Outline

 Visibility modifiers

 Counting sort

 Radix sort

Imagine that you are a cycling purist

who owns a bike shop.

Tricycles make you angry.

“They don’t belong in a bike shop.”

From before: Inheritance

Inheritance is a mechanism for defining a class in terms
of another class. It is a labor-saving device employed to
reduce co d e d u p l i c a t i o n . I nher i tance a l lows
programmers to specify a new implementation while :

1. maintaining the same behavior,
2. reusing code, and
3. extending the functionality of existing software.

How can we prevent programmers from
changing essential behavior?
abstract class Cycle {
 int numWheels;
 int numGears;
 String color;
 String brand;

 Cycle(String color, String brand) {
 this.color = color;
 this.brand = brand;
 this.numWheels = 2;
 this.numGears = 2;

 }

 public String toString() {
 return
 "number of wheels: " + numWheels + "\n" +
 "number of gears: " + numGears + "\n" +
 "color: " + color + "\n" +
 "brand: " + brand + "\n";

 }
}

How can we prevent programmers from
changing essential behavior?

class Tricycle extends Cycle {
 String flagColor;

 public Tricycle(String color, String brand, String flagColor) {

 super(color, brand);
 numWheels = 3;
 this.flagColor = flagColor;

 }

 public String toString() {
 return
 super.toString() +
 "flag color: " + flagColor + "\n";

 }
}

Can we make it
impossible to change
numWheels in
subclass?

How can we prevent programmers from
changing essential behavior?
abstract class Cycle {
 int numWheels;
 int numGears;
 String color;
 String brand;

 Cycle(String color, String brand) {
 this.color = color;
 this.brand = brand;
 this.numWheels = 2;
 this.numGears = 2;

 }

 public String toString() {
 return
 "number of wheels: " + numWheels + "\n" +
 "number of gears: " + numGears + "\n" +
 "color: " + color + "\n" +
 "brand: " + brand + "\n";

 }
}

} Can we make it impossible to
override numWheels?

Yes. Use visibility modifiers.

The default is “no modifier,” aka package-private.

Modifiers control who has access to a class/method/
variable and under what circumstances.

E.g., a class always has access to a member
(variable or method), regardless of modifier.

Note: Subclass means “subclass in a different package.”

Yes. Use visibility modifiers. How can we prevent programmers from
changing essential behavior?
abstract class Cycle {
 private int numWheels;
 int numGears;
 String color;
 String brand;

 Cycle(String color, String brand) {
 this.color = color;
 this.brand = brand;
 this.numWheels = 2;
 this.numGears = 2;

 }

 public String toString() {
 return
 "number of wheels: " + numWheels + "\n" +
 "number of gears: " + numGears + "\n" +
 "color: " + color + "\n" +
 "brand: " + brand + "\n";

 }
}

} Can we make it impossible to
override numWheels? Yes.

Hipster mission accomplished

$ javac *.java
Tricycle.java:6: error: numWheels has private access in Cycle

numWheels = 3;
^

1 error

Sorting faster than O(n log n)

Donald Knuth proved
that comparison sorting
can never be faster than
O(n log n).

(nice proof in the “CLRS”
textbook for the curious)

But the question remains: can we sort faster than O(n log n)?

Answer: Yes, as long as we can make assumptions about data.

Counting sort

How many cards in a deck of cards? 52

Suppose I dropped them on the floor To sort them, I could use insertion sort,
quick sort, etc.

But unlike other things I might sort, I know
exactly where these things should go.

(code)

Counting sort

public static int[] sort(int[] A, int k) {
 int[] B = new int[A.length];
 int[] C = new int[k];
 // initialize counting array
 for (int i = 0; i < k; i++) {
 C[i] = 0;
 }
 // count instances of values stored in A[j]
 for (int j = 0; j < A.length; j++) {
 C[A[j]] += 1;
 }
 // produce cumulative totals in C so that
 // C[i] contains the number of elements <= i
 for (int i = 1; i < k; i++) {
 C[i] += C[i-1];
 }
 // sort using position dictated by C[i]
 for (int j = A.length - 1; j >= 0; j--) {
 B[C[A[j]] - 1] = A[j]; // put A[j] in B in position C[A[j]] - 1
 C[A[j]] = C[A[j]] - 1; // update count for C[A[j]]
 }
}

Cool fact: counting sort is stable

Cool fact: counting sort is O(n + k)

It is O(n) when k << n.

What if we want to sort bigger numbers?

Can we still do it in O(n) time?

A multi-digit number
d digits

k
values

(a Hollerith punch card)

A multi-digit number
d digits

k
values

n
elements

Radix sort

• Insight: sort each element by its least significant digit.
• Then sort by the next significant digit.
• …
• Finally, sort by most significant digit.
• This will take O(d * g(n)) time
• If g(n) = O(n + k), then O(d(n + k)) time
• E.g., d = 80, k = 10 then O(80(n + 10)) time = O(n) time

Radix sort

public static int[] sort(int[] A, int k, int d) {
 for (int i = 0; i < d; i++) {

 // suppose dthDigit(A) returns a new array
 // consisting of the dth digit of every
 // element in A.

 int[] D = dthDigit(A);
 return CountingSort.sort(D, k);
 }
}

Recap & Next Class

Today we learned:

Next class:

Visibility modifiers

Counting sort

Radix sort

Search

