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Lecture 11 Big-O notation

Asymptotic analysis, part 2

Instructor: Dan Barowy
Williams

Announcements Have you ever been frustrated because you don't
even understand what the professor is asking?

Feedback: Assert.pre / Assert.post
Who here knows where to find docs?

structureb5 documentation on book website




Life skill #8

Understanding the problem is half the battle.

Specification problem

Our APIs are lists of methods, along with brief English-language descriptions of what
the methods are supposed to do. Ideally, an API would clearly articulate behavior for
all possible inputs, including side effects, and then we would have software to check
that implementations meet the specification. Unfortunately, a fundamental result
from theoretical computer science, known as the specification problem, says that this
goal is actually impossible to achieve. Briefly, such a specification would have to be
written in a formal language like a programming language, and the problem of
determining whether two programs perform the same computation is known,
mathematically, to be unsolvable. (If you are interested in this idea, you can learn
much more about the nature of unsolvable problems and their role in our
understanding of the nature of computation in a course in theoretical computer
science.) Therefore, we resort to informal descriptions with examples, such as those
in the text surrounding our APIs.

—Sedgwick and Wayne, Computer Science: An Introductory Approach

Life skill #8

Understanding the problem is half the battle.

AND

KNOWING IS

HALF THE BATTLE.

You can work with anyone to understand problems!
(but only work with your partner to solve them)

How do we decide if one

algorithm is better (time/space)

than another?

Comparing Objects

Write < or > or = in the box.
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Why can't we just measure "wall time™?




Recall: directly measuing is problematic

» Other things are happening at the same time

+ Total running time usually varies by input

« Different computers may produce different
results!

Big idea:

{Time, Spacel cost in terms of n,
where n is the size of the input.

time

l.e., costis afunction of n,

Big idea:

This form makes comparisons easy.
Better -

time j

n

One program is clearly better than the other.

Overcounting Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
int maxPos = 0

for(ime 3= 1 i < Length; 1+4) // line1cost ¢
or(int i = 1; i < arr.length; i X ‘
if (arr[maxPos] < arr[i]) { 7 Une 2 cost: nc;
maxPos = i; // line 3 cost: ncs
} // line 4 cost: nc,
return maxpos; // line 6 cost: cs

Total cost: €1+ ncz + ncz + ncy+ cs
=ci+n(ca+ c3t c4) +Cg
=n(Cz2+C3+Cy) *C1+Cx

= O(n)

Overcounting gives us an upper bound.




Undercounting Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

i“t"f‘a’t“"_’s =1° < arrtengths 1oy // line 1 cost: €1
or(int i = 1; i < arr.length; i X
// line 2 cost: ncz

if (arr[maxPos] < arr[i]) {

maxPos = i; // line 3 cost: ncy
} // line 4 cost. zero
return maxpos; // line 6 cost: cs

Totalcost: ca+ncz+ncy+ 0+ cy
=cithnlcz+ C4) +Cs
=n(ca+Cy +C1+Cs

= O(n)

Undercounting gives us a lower bound.

What did we learn?

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
int maxPos = 0
for(int i = 1; i < arr.length; i++)
if (arr[maxPos] < arr[i]) {
maxPos = 1i;
}

return maxPos;

Upper bound: O(n)
Lower bound: O(n)

Function's run time is ‘linear”, no matter what.

Focus is on order of magnitude

— xlog(x)

Cases

We can do this analysis for the best,
average, and worst cases.

When the case is left unstated, we usually
mean “worst case’’




Function growth

Consider the following functions, for x = 1
o f(x) =1

o gX) = log,(x) // Reminder: if x=2n, log,(x) = n
* h(x) = x i.e., logis the inverse of

« M) =xlog,(x) exponentiation

e N(x)=x2

* p(x) = x3

* r(x) = 2x

Rule of thumb

 Ignore additive and multiplicative
constants

e Examples:
* n+1isessentially n
e nand n/2 are the same order of magnitude
* N2/1000, 2n2, and 1000N2 are “pretty much” just n2
o goNk+ankil+agnk2+.ga,  isroughly nk

* The key is to find the most significant or
dominant term

More precisely: take the limit

e Suppose we discover cost is 3x4 - 10x3 - 1
* What is the dominant term?
e How do we know?
o EX My, (34 - 10X3 - 1)/ x4
o = lIMyLw 3-10/X-1/X4=73
o SO 3x4 - 10x3 - 1 grows “like" x4

Big-O notation

Let f and g be real-valued functions that are defined on
the same set of real numbers. Then f is of order g, written
f(n) is O(g(n)), if and only if there exists a positive real
number ¢ and a real number no such that for all n in in the
common domain of f and g,

[f(n)] < c x |g(n)|, whenever n > no.

We read this as: “f(n) is O(g(n))"
as “f of nis big-oh of g of n




Big-O notation f(n) is O(g(n))

If(n)] < ¢ x |g(n)|, whenever n > no. !
N o fin) o(n)
e Cxgisatleast as big as’ f for large n
 for some multiplicative constant ¢
* Example:
e f(n) = n2/2is O(na) no n
e f(n) = 1000Nn3 is O(n3)
e f(n) = n/2 is On) Because there is some point no after which f(n) is
always closer to the horizontal axis (forever).
Grapher example "Best" upper bounds

* We typically want the most conservative upper
bound when we estimate running time

* And among those, the simplest

* Example: Let f(n) = 3n2
fln) = n2/2is O(n2) e f(n)is O(n2)

e f(n)is O(n3)

» f(n) is O(2n) (see next slide)
 f(n) is NOT O(n) (!!)

‘Best” upper bound is O(n2)

We care about ¢ and n, in practice, but focus on size
of g when designing algorithms and data structures




Input-dependent running times

Algorithms may have different running times for
different input values

Best case (typically not useful)

* Sort already sorted array in O(n)

* Find item in first place that we look O(1)

Worst case (generally useful, sometimes misleading)
* Don't find item in list O(n)

* Reverse order sort O(n2)

Average case (useful, but often hard to compute)

e Linear search O(n)

* QuickSort random array O(n log n)

Why is this important?
We want an easy comparison between

program costs as a function of input size n.

Better =

time J/
n

One program is clearly better than the other.

Something to think about

Why is the array doubling strategy
for Vector better than expanding the
array one element at a time?

Recap & Next Class

Today we learned:

Intro to asymptotic analysis

Next class:

Big-O notation




