

Announcements

Feedback: Assert.pre / Assert. post

Who here knows where to find docs?
structure5 documentation on book website

Have you ever been frustrated because you don't even understand what the professor is asking?

Life skill \#8

Understanding the problem is half the battle.

Specification problem

Our APIs are lists of methods, along with brief English-language descriptions of what the methods are supposed to do. Ideally, an API would clearly articulate behavior fo all possible inputs, including side effects, and then we would have software to check hat implementations meet the specification. Unfortunately, a fundamental resul from theoretical computer science, known as the specification problem, says that this goal is actually impossible to achieve. Briefly, such a specification would have to be written in a formal language like a programming language, and the problem of determining whether two programs perform the same computation is known mathematically, to be unsolvable. (If you are interested in this idea, you can learn much more about the nature of unsolvable problems and their role in our understanding of the nature of computation in a course in theoretical computer science.) Therefore, we resort to informal descriptions with examples, such as those in the text surrounding our APIs.
-Sedgwick and Wayne, Computer Science: An Introductory Approach

Life skill \#8

Understanding the problem is half the battle.

You can work with anyone to understand problems!
(but only work with your partner to solve them)

Why can't we just measure "wall time"?

Recall: directly measuing is problematic

- Other things are happening at the same time
- Total running time usually varies by input
- Different computers may produce different results!

Big idea:

This form makes comparisons easy.

One program is clearly better than the other.

Big idea:
[Time, Space] cost in terms of \mathbf{n}, where n is the size of the input.

Overcounting Example

```
// Pre: array length n > 0
public static int findPosofmax(int[] arr) {
```



```
    for(int i=1; i < arr.length; i++)
            arr[maxPos] < arr[i]) {
            maxPos = i;
        turn maxPos

Total cost: \(\mathbf{c}_{1}+\mathbf{n c}_{\mathbf{2}}+\mathbf{n c}_{3}+\mathbf{n c}_{4}+\mathbf{c}_{5}\)
\(=\mathbf{c}_{1}+\mathbf{n}\left(\mathbf{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{4}\right)+\mathrm{c}_{5}\) \(=\mathbf{n}\left(\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right)+\mathrm{C}_{1}+\mathrm{C}_{5}\)
\(=O(n)\)
Overcounting gives us an upper bound.

\section*{Undercounting Example}
(/ Pre: array length \(\mathrm{n}>0\)
public static int findPosofmax(int[] arr) int maxPos \(=0\)
// line 1 cost: \(\mathbf{c}_{1}\) // line 2 cost: \(\mathrm{nc}_{2}\) // line 3 cost: \(\mathrm{nc}_{4}\) // line 4 cost: zero // line 6 cost: \(c_{5}\)

Total cost: \(\mathbf{c}_{\mathbf{1}} \mathbf{+} \mathbf{n c} \mathbf{C}_{\mathbf{2}}+\mathbf{n c} \mathbf{C}_{\mathbf{4}}+\mathbf{0}+\mathbf{C}_{5}\)
\(=\mathrm{C}_{1}+\mathrm{n}\left(\mathrm{C}_{2}+\mathrm{C}_{4}\right)+\mathrm{C}_{5}\)
\(=\mathrm{n}\left(\mathrm{c}_{2}+\mathrm{c}_{4}\right)+\mathrm{c}_{1}+\mathrm{c}_{5}\)
\(=O(n)\)

Undercounting gives us a lower bound.

What did we learn?
// Pre: array length \(n>0\)
public static int findposofmax(int[] arr) \{ ht maxPos \(=0\)
for(int \(i=1 ; i<a r r . l e n g t h ; i++)\)
\(\underset{\operatorname{maxPos}=i}{(\operatorname{arr}[\operatorname{maxPos}]}<\operatorname{arr}[i])\{\)
maxPos \(=i ;\)
\(\stackrel{\}}{\text { return maxPos; }}\)
\}

Upper bound: O(n)
Lower bound: O(n)
Function's run time is "linear", no matter what.

Cases

We can do this analysis for the best, average, and worst cases.

When the case is left unstated, we usually mean "worst case."

\section*{Function growth}

Consider the following functions, for \(x \geq 1\)
- \(f(x)=1\)
- \(g(x)=\log _{2}(x) \quad / /\) Reminder: if \(x=2^{n}, \log _{2}(x)=n\)
- \(h(x)=x \quad\) i.e., \(\log\) is the inverse of
- \(m(x)=x \log _{2}(x) \quad\) exponentiation
- \(n(x)=x^{2}\)
- \(p(x)=x^{3}\)
- \(r(x)=2^{x}\)

\section*{Rule of thumb}
- Ignore additive and multiplicative constants
- Examples:
- \(n+1\) is essentially \(n\)
- \(n\) and \(n / 2\) are the same order of magnitude
- \(n^{2} / 1000,2 n^{2}\), and \(1000 n^{2}\) are "pretty much" just \(n^{2}\)
- \(a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}\) is roughly \(n^{k}\)
- The key is to find the most significant or dominant term

\section*{More precisely: take the limit}
- Suppose we discover cost is \(3 \times 4-10 \times 3-1\)
-What is the dominant term?
- How do we know?
- Ex: \(\lim _{x \rightarrow \infty}\left(3 x^{4}-10 x^{3}-1\right) / x^{4}\)
- \(=\lim _{x \rightarrow \infty} 3-10 / x-1 / x^{4}=3\)
-So 3x4-10x3-1 grows "like" \(x^{4}\)

\section*{Big-O notation}

Let \(f\) and \(g\) be real-valued functions that are defined on the same set of real numbers. Then \(f\) is of order \(g\), written \(f(n)\) is \(O(g(n))\), if and only if there exists a positive real number c and a real number \(\mathrm{n}_{0}\) such that for all n in in the common domain of \(f\) and \(g\),
\(|f(n)| \leq c \times|g(n)|\), whenever \(n>n_{0}\).
We read this as: " \(f(n)\) is \(O(g(n)) "\)
as " \(\mathbf{f}\) of \(\mathbf{n}\) is big-oh of \(\mathbf{g}\) of \(\mathbf{n}\)."

\section*{Big-O notation}
\(|f(n)| \leq c \times|g(n)|\), whenever \(n>n_{0}\).
- \(\mathrm{c} \times \mathrm{g}\) is "at least as big as" \(\mathbf{f}\) for large \(\mathbf{n}\)
- for some multiplicative constant c
- Example:
- \(f(n)=n^{2} / 2\) is \(O\left(n^{2}\right)\)
- \(f(n)=1000 n^{3}\) is \(O(n 3)\)
- \(f(n)=n / 2\) is \(O(n)\)
\[
f(n) \text { is } O(g(n))
\]


Because there is some point \(n_{0}\) after which \(f(n)\) is always closer to the horizontal axis (forever).

\section*{"Best" upper bounds}
- We typically want the most conservative upper bound when we estimate running time
- And among those, the simplest
- Example: Let \(f(n)=3 n^{2}\)
- \(f(n)\) is \(O\left(n^{2}\right)\)
- \(f(n)\) is \(O(n 3)\)
- \(f(n)\) is \(O\left(2^{n}\right)\) (see next slide)
- \(f(n)\) is NOT O(n) (!!)
- "Best" upper bound is \(O\left(n^{2}\right)\)
- We care about c and \(n_{0}\) in practice, but focus on size of \(\mathbf{g}\) when designing algorithms and data structures

\section*{Input-dependent running times}
- Algorithms may have different running times for different input values
- Best case (typically not useful)
- Sort already sorted array in O(n)
- Find item in first place that we look O(1)
- Worst case (generally useful, sometimes misleading)
- Don't find item in list O(n)
- Reverse order sort O(n²)
- Average case (useful, but often hard to compute)
- Linear search O(n)
- QuickSort random array O(n log n)

\section*{Something to think about}

Why is the array doubling strategy for Vector better than expanding the array one element at a time?

Why is this important?
We want an easy comparison between program costs as a function of input size \(\mathbf{n}\).


One program is clearly better than the other.

Recap \& Next Class

\section*{Today we learned:}

Intro to asymptotic analysis

Next class:
Big-O notation```

