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Announcements

Feedback: Assert.pre / Assert.post

Who here knows where to find docs?

structure5 documentation on book website

Have you ever been frustrated because you don’t 
even understand what the professor is asking?



Life skill #8

Understanding the problem is half the battle.

—Sedgwick and Wayne, Computer Science: An Introductory Approach

Life skill #8

Understanding the problem is half the battle.

You can work with anyone to understand problems!

(but only work with your partner to solve them)

How do we decide if one 
algorithm is better (time/space) 

than another?

Why can’t we just measure “wall time”?



Recall: directly measuing is problematic

• Other things are happening at the same time 
• Total running time usually varies by input 
• Different computers may produce different 

results!

Big idea:

{Time, Space} cost in terms of n,
where n is the size of the input.

I.e., cost is a function of n.
n

time

Big idea:

This form makes comparisons easy.

n

time

One program is clearly better than the other.

Better = grows more slowly

Overcounting Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for(int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) {
              maxPos = i;
          }

return maxPos;
}

// line 1 cost: c1

// line 2 cost: nc2

// line 3 cost: nc3

// line 6 cost: c5

Total cost: c1 + nc2 + nc3 + nc4 + c5

= c1 + n(c2 + c3 + c4) + c5

= n(c2 + c3 + c4) + c1 + c5

≈ O(n)

// line 4 cost: nc4

Overcounting gives us an upper bound.



Undercounting Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for(int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) {
              maxPos = i;
          }

return maxPos;
}

// line 1 cost: c1

// line 2 cost: nc2

// line 3 cost: nc4

// line 6 cost: c5

Total cost: c1 + nc2 + nc4 + 0 + c5

= c1 + n(c2 + c4) + c5

= n(c2 + c4) + c1 + c5

≈ O(n)

// line 4 cost: zero

Undercounting gives us a lower bound.

What did we learn?

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for(int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) {
              maxPos = i;
          }

return maxPos;
}

Upper bound: O(n)

Lower bound: O(n)

Function’s run time is “linear”, no matter what.

Focus is on order of magnitude Cases

We can do this analysis for the best, 
average, and worst cases. 

When the case is left unstated, we usually 
mean “worst case.”



Consider the following functions, for x ≥ 1 
• f(x) = 1 

• g(x) = log2(x) 

• h(x) = x 

• m(x) = x log2(x) 

• n(x) = x2 

• p(x) = x3 

• r(x) = 2x

Function growth

// Reminder: if x=2n, log2(x) = n 

i.e., log is the inverse of 
exponentiation

• Ignore additive and multiplicative 
constants 

• Examples: 
• n + 1 is essentially n 
• n and n/2 are the same order of magnitude 
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2 

• a0nk + a1nk-1 + a2nk-2 + … ak 
  is roughly nk 

• The key is to find the most significant or 
dominant term 

Rule of thumb

• Suppose we discover cost is 3x4 - 10x3 - 1 
• What is the dominant term? 
• How do we know? 

• Ex: limx→∞ (3x4 - 10x3 - 1)/x4 

• = limx→∞ 3 - 10/x - 1/x4 = 3 

• So 3x4 - 10x3 - 1 grows “like” x4

More precisely: take the limit Big-O notation

Let f and g be real-valued functions that are defined on 
the same set of real numbers.  Then f is of order g, written 
f(n) is O(g(n)), if and only if there exists a positive real 
number c and a real number n0 such that for all n in in the 
common domain of f and g,

|f(n)| ≤ c × |g(n)|, whenever n > n0.

We read this as: “f(n) is O(g(n))” 
as “f of n is big-oh of g of n.”



Big-O notation

|f(n)| ≤ c × |g(n)|, whenever n > n0.

• c × g is “at least as big as” f for large n 

• for some multiplicative constant c 

• Example: 

• f(n) = n2/2 is O(n2) 
• f(n) = 1000n3 is O(n3) 

• f(n) = n/2 is O(n)

f(n) is O(g(n))

Because there is some point n0 after which f(n) is 
always closer to the horizontal axis (forever).

0

Grapher example

f(n) = n2/2 is O(n2)

• We typically want the most conservative upper 
bound when we estimate running time 
• And among those, the simplest  

• Example: Let f(n) = 3n2 

• f(n) is O(n2) 
• f(n) is O(n3) 
• f(n) is O(2n) (see next slide) 
• f(n) is NOT O(n) (!!) 

• “Best” upper bound is O(n2) 
• We care about c and n0 in practice, but focus on size 

of g when designing algorithms and data structures

“Best” upper bounds



• Algorithms may have different running times for 
different input values 

• Best case (typically not useful) 
• Sort already sorted array in O(n) 
• Find item in first place that we look O(1) 

• Worst case (generally useful, sometimes misleading) 
• Don’t find item in list O(n) 
• Reverse order sort O(n2) 

• Average case (useful, but often hard to compute) 
• Linear search O(n) 
• QuickSort random array O(n log n)

Input-dependent running times Why is this important?

We want an easy comparison between 
program costs as a function of input size n.

n

time

One program is clearly better than the other.

Better = grows more slowly

Something to think about

Why is the array doubling strategy 
for Vector better than expanding the 
array one element at a time?

Recap & Next Class

Today we learned:

Next class:

Intro to asymptotic analysis

Big-O notation 


