
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 10

Asymptotic analysis, part 1

Announcements

•PRE-LAB: Partner preference form

•Quiz wording (ambiguous)

Quiz

Outline

 Rec. solution to coin problem

 Asymptotic analysis

Last time

Prove: n cents can be obtained by using only
3-cent and 8-cent coins, for all n ≥ 15.

Proof sketch
a = 15; P(15): is 5 x 3 cents. True.

P(k) ⇒ P(k+1)

Case 1: P(k) has a at least one 8-cent coin.
 Then we can produce the value k+1 by
replacing an 8-cent coin with 3 x 3 cent coins.

Assume P(k) is true.

Case 2: P(k) has no 8-cent coin.
 Then we can produce the value k+1 by
replacing 5 x 3 cents coins with 2 x 8 cent
coins. This is OK because k > 15.

Therefore we can find change for all n ≥ 15.

True.

True.

Activity

Now write a program that gives you the correct
change for all n ≥ 15.

Asymptotic analysis

How do we know if an algorithm
is faster than another?

Why can’t we just measure “wall time”?

Why can’t we just measure “wall time”?

• Other things are happening at the same time
• Total running time usually varies by input
• Different computers may produce different

results!

Let’s just count instructions, then

• What do we count?
• Count all computational steps?
• What is a “step”?
• What about steps inside loops?

Stepping back…

• How accurate do we need to be?
• If one algorithm takes 64 steps and another

128 steps, do we need to know the precise
number?

We what do

Instead of precisely counting steps, we usually
develop an approximation of a program’s time
or space complexity.

This approximation ignores tiny details and
focuses on the big picture: how do time or
space requirements grow as a function of the
size of the input?

Cases: best, average, worst

We can do this analysis for the best, average,
and worst cases. We often focus on the worst
case.

Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• if complicates counting

• Idea: overcount: assume if block always runs
• in the worst case, it does

• Overcounting gives upper bound on run time
• Can also undercount for lower bound

Overcounting Example

// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) {
 maxPos = i;
 }

return maxPos;
}

// line 1 cost: c1

// line 2 cost: nc2

// line 3 cost: nc3

// line 6 cost: c5

Total cost: c1 + nc2 + nc3 + nc4 + c5

= c1 + n(c2 + c3 + c4) + c5

= n(c2 + c3 + c4) + c1 + c5

≈ O(n)

(as you shall see)

// line 4 cost: nc4

Recap & Next Class

Today we learned:

Next class:

Intro to asymptotic analysis

Big-O notation

