CSCl 136:
Data Structures
and
Advanced Programming
Lecture 9
Recursion, part 3
Instructor: Dan Barowy
Williams

Announcements

-Save the date:
Final exam: May 15, 1:30pm
-Partners: no, can't go solo
-Partners: next time in your section

Outline

Quiz
Study tip
Mathematical induction
Activity

Mathematical induction

Example

Prove that the sum of the first n integers is:

$$
\frac{n(n+1)}{2}
$$

Example

Step 1: Prove P(a)

What would a good a be?

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

The "simplest" instance is $\mathbf{a}=\mathbf{1}$. Let's start there.

Example

Put another way, prove

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

For all $n \geq 1$.

We have an unbounded number of hypotheses ("for all $n \geq 1$ ").

Use mathematical induction.

Example

Step 1: Prove P(a)

$$
P(a): 1=\frac{1(1+1)}{2}
$$

Is this statement true? Yes.
Proof: $\frac{1(1+1)}{2}=\frac{2}{2}=1$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Assume the following is true:

$$
P(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

Prove:
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$

$$
(1+2+3+\ldots+k)+(k+1)
$$

According to $P(k)$, which is true,
it must be equal to:

$$
(1+2+3+\ldots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)
$$

Example

Step 2: Prove $\mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
Let's handle the left side first.

$$
1+2+3+\ldots+(k+1)
$$

Looks familiar. Isn't it the same as:

$$
(1+2+3+\ldots+k)+(k+1)
$$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Simplify
$=\frac{k(k+1)}{2}+(k+1)$
$=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$
$=\frac{k(k+1)+2(k+1)}{2}$
Let's stop here.
The left side is
$=\frac{(k+1)(k+2)}{2}$

Example

Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
Let's handle the right side now.

$$
\frac{(k+1)((k+1)+1)}{2}
$$

Simplify

$$
\frac{(k+1)(k+2)}{2} \text { Let's stop here. }
$$

Example

Step 1: Prove P(a)
Step 2: Prove $\mathbf{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
Therefore,

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

For all $n \geq 1$.
Is true.

Example

Step 2: Prove $\mathbf{P}(\mathbf{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)$
$P(k+1): 1+2+3+\ldots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
We just showed that the left side

$$
\frac{(k+1)(k+2)}{2}
$$

equals the right side

$$
\frac{(k+1)(k+2)}{2}
$$

Activity

Prove: n cents can be obtained by using only 3 -cent and 8 -cent coins, for all $n \geq 15$.

Activity

Now write a program that gives you the correct change for all $n \geq 15$.

Recap \& Next Class

Today we learned:

Mathematical induction

Next class:
Asymptotic analysis (aka "Big-O")

