CSCI 136: Data Structures and Advanced Programming Lecture 9 Recursion, part 3 Instructor: Dan Barowy

Williams

Announcements

•Save the date: Final exam: May 15, 1:30pm

- •Partners: no, can't go solo
- Partners: next time in your section

Outline

Quiz

Study tip Mathematical induction Activity

Mathematical induction

Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

Assume the following is true:

P(k): 1 + 2 + 3 + ... + k =
$$\frac{k(k+1)}{2}$$

Prove:

P(k+1): 1 + 2 + 3 + ... + (k + 1) =
$$\frac{(k+1)((k+1)+1)}{2}$$

Example
Step 2: Prove P(k)
$$\Rightarrow$$
 P(k+1)
P(k+1): $1+2+3+...+(k+1) = \frac{(k+1)((k+1)+1)}{2}$
Let's handle the left side first.
 $1+2+3+...+(k+1)$
Looks familiar. Isn't it the same as:
 $(1+2+3+...+k)+(k+1)$

Activity

Now write a program that gives you the correct change for all n \geq 15.

Recap & Next Class

Today we learned:

Mathematical induction

Next class:

Asymptotic analysis (aka "Big-O")