CSCI 136:
Data Structures
and
Advanced Programming
Lecture 8
Recursion, part 2
Instructor: Dan Barowy
Williams

Data Structures and

Lecture 8
Recursion, part 2
Instructor: Dan Barowy
Williams

Outline

Recursion activity
Mathematical induction

Announcements

-Lab 3 d'oh!! ignore Github emails.
-Lab 1 feedback sent as pull request.
-Lab 3: partners assigned

Activity

Write a method
public static int[] deriv(int[] poly)
that computes the derivative for a polynomial.
poly is an int [] that represents the coefficients of a polynomial. E.g.,

$\qquad 4 x^{3}+x^{2}-3 x+2$
is represented by the array:
And deriv returns the array:
2

0
-3
:---:

which represents the coefficients of the derivative

Activity Solution

```
import java.util.Arrays;
class Derivative {
    public static int[] derivHelper(int[] poly, int i, int[] output) {
        if (i == 0) {
        return derivHelper(poly, i + 1, output);
        } else if (i == poly.length) {
        return output;
        output[i-1] = poly[i] * i;
        return derivHelper(poly, i + 1, output);
    }
    public static int[] deriv(int[] poly) {
        int[] output = new int[poly.length - 1]
        return derivHelper(poly, 0, output);
    }
    public static void main(String[] args) {
        int[] input = {2, -3, 1, 4};
        int[] output = deriv(input);
        " + Arrays.toString(input));
        System.out.println("output: " + Arrays.toString(output));
```

A note about "formal methods"

If the problem "fits" the mold, there is a procedure for determining truth.

Mathematical Induction

Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Purpose: to simultaneously prove an infinite number of theorems!

Principle of Mathematical Induction

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $\mathrm{k} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true.
then the statement
for all integers $\mathrm{n} \geq \mathrm{a}, \mathrm{P}(\mathrm{n})$ is true
is also true.

To be clear:

If you want to prove that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq \mathrm{a}$,

1. You must first prove that $P(a)$ is true.
2. Then you must prove that:

For all integers $\mathrm{k} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true.

Critically, when proving \#2, assume that $P(k)$ is true and show that $P(k+1)$ must also be true.

Principle of Mathematical Induction (variant)

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k>a$, if $P(k-1)$ is true then $P(k)$ is true.
then the statement
for all integers $\mathrm{n} \geq \mathrm{a}, \mathrm{P}(\mathrm{n})$ is true
is also true.

Names

Hypothesis: $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq \mathrm{a}$,

1. Base case: $P(a)$ is true.
2. Inductive step:

For all integers $\mathrm{k} \geq \mathrm{a}$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true.

Like recursion, there is an analogy

Example

Prove that the sum of the first n integers is:

$$
\frac{n(n+1)}{2}
$$

Like recursion, there is an analogy

Recap \& Next Class
Today we learned:

Recursion (more)
Mathematical induction

Next class:
More mathematical induction!

