
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 7

Recursion, part 1

Announcements

•Lab 1 feedback coming today.

•If you had a Github snafu, see me
after class.

•Lab 3: quasi-random partners
•“I know that the TA's have busy lives just as I
do, but I would really love it if there were more
TA hours on Saturdays. Sunday TA hours are busy
and stressful. Would love if that was a
possibility!”

Outline

 Study tip

 Pre/post conditions

 Recursion

 Recursion activity

 Recursion tradeoffs

Life skill #7

Engineer the outcome you want

Life skill #7

Engineer the outcome you want

More specifically, ask yourself:
“What efforts yield the greatest return on

investment?”

Do the things that get you
closest to your goal, fastest.

If you do not know what your goal is, college is the
time to start thinking about it!

Life skill #7

Engineer the outcome you want

If your goal is an A grade, then you might be
tempted to think that copying will

yield the greatest return.

First: Getting an A is not really your goal.
More likely: getting a good job;

personal satisfaction.

Second: Suppose you got that job through cheating;
how long do you think you can keep it?

Pre/post conditions

Pre-condition

A pre-condition is a true/false statement (a “predicate”)
that must always be true prior to a code segment (e.g., a
function) being called. If a pre-condition is false, the
result of executing the code is undefined.

Post-condition

A post-condition is a true/false statement (a “predicate”)
that must always be true after a code segment (e.g., a
function) is called. Usually, if a pre-condition is false,
there will be no guarantee that the post-condition is true.

Example

int z = x + 1;

What does this operation do?
(i.e., what is our desired post-condition?)

Example

Are you sure?

int z = x + 1; (code)

Example

Are you sure?

char x = ‘a’;

int z = x + 1;

z equals 98

Example

What should our pre-conditions have been?

int z = x + 1;

1. x is an int
2. x < Integer.MAX_VALUE

char x = ‘a’;

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?
• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• It’s a good idea to put pre- and post-conditions in
comments before your methods

/* pre: 0 ≤ index < length
 * post: returns char at position index
 */
 public char charAt(int index) { … }

Pre/post conditions

• Pre and post conditions form a contract
• Principle: Ensure Post-condition is satisfied if

pre-condition is satisfied
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements
that user of method should satisfy

• But, as comments, they are not enforced

Pre/post conditions

• Pre- and post-condition comments are
useful as a programmer, but it would be
really helpful to know as soon as a pre-
condition is violated (and return an error)

• The Assert class (in structure5
package) allows us to programmatically
check for pre- and post-conditions

Assert class

Remember: “Assume your code will fail.”

The Assert class contains the static methods
public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is
raised, the message is printed and the program
halts.

Assert class

// Pre: x is an int < MAX_VALUE
// Post: returns number one greater than number given
public static int addOne(int x) {

Assert.pre(x < Integer.MAX_VALUE, "x must be an
integer less than MAX_VALUE.");

int z = x + 1;
Assert.post(z > x, "z must be greater than x.");
return z;

}

Example

1. State pre/post conditions in comments

2. Check conditions in code using Assert

3. Use Fail in unexpected cases (such as
the default block of a switch statement)

• Any questions?
• You should use Assert in Lab 3

General guidelines

Recursion

• General problem solving strategy
• Split big problem into smaller sub-

problems.
• Sub-problems may look a lot like original; are

often smaller versions of same problem!

Recursion

Recursion

Recursion occurs when a thing is defined in terms of
itself. The most common application of recursion in
computer science, is when a function is called within its
own definition.

• Many algorithms are recursive
• Often easier to understand (and prove

correctness/state efficiency of) than non-
recursive versions!

Recursion

• n! = n × (n-1) × (n-2) × … × 1
• How can we implement this?
• We could use a for loop…

 int product = 1;
for(int i = 1;i <= n; i++)

product *= i;

• But we could also write it recursively….

Recursion

• n! = n × (n-1) × (n-2) × … × 1
• But we can also write it recursively.
• Work with a partner and see if you can

come up with a recursive solution.

Activity: Factorial

• n! = n × (n-1) × (n-2) × … × 1
• n! = n × (n-1)
• 0! = 1

How did we know to look for that insight? Recursion: formal structure

• Recursion is a good solution when a problem fits a
basic pattern:

• It has at least one “terminating” rule that does not
use recursion, called the base case.

• It has at least one rule that does use recursion,
called the recursive case. The recursive case
should reduce the problem toward the base case.

We will talk about formal (i.e., “inductive”)
proofs for recursion next class.

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Graphically… Building a wall (recursively)

What are our base/recursive cases?

(suppose we have infinite bricks)

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Time cost of recursive calls
• Memory cost (need to store state for each

recursive call until base case is reached)

Recursion tradeoffs

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

Call program with input “3”.

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

Call program with input “3”.

main
args
n

“3”

0

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

I skipped a subtlety here; did you spot it?

main
args
n = 3

“3”

0

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2 class Factorial {

 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

fact
n = 0

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

“Recursion is terminated!”
fact

n = 0

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

ret = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

fact
n = 1

ret = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

fact
n = 2

ret = 1

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

fact
n = 3

ret = 2

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

ret = 6

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3

“3”

0

ret = 6

println
s = “6”

I skipped another subtlety here; did you spot it?

class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

“3”

0

Recap & Next Class

Today we learned:

Next class:

 Pre/post conditions

 Recursion

 Recursion activity

 Recursion tradeoffs

Mathematical induction

