
Welcome and Syllabus! CS 136
(Data Structures)

Sam McCauley

February 6, 2026

Hi!

• I’m Sam; you can call me Sam

• Office: TPL 304

• Email: sam@cs.williams.edu

• Not quite accessible; let me know if

that’s ever an issue

sam@cs.williams.edu

Course Materials and Tools

• Course website

• http://cs.williams.edu/~cs136/index.html

• Syllabus, schedules, office hours, readings, links to (virtually) all content

• Gitlab

• evolene.cs.williams.edu

• Used for git: starter code, helping you keep track of your work

• Gradescope

• gradescope.com

• Used for all grading/feedback

http://cs.williams.edu/~cs136/index.html
evolene.cs.williams.edu
gradescope.com

Syllabus

• Let’s look at the syllabus

• And the website

Honor Policy

• Academic dishonesty is often overstated in students’ minds—most students

are honest

• I’m expecting to have some honor code cases this year

• A “reverse lottery:” cheating gains you a little each time, but you risk losing a

lot

FAQ: LLMs are extremely useful. Why can’t we use them?

LLMs for Coding

• LLMs are currently great for jobs that you COULD do, but would be a bit of a

pain to actually do

• Goal of this class: get you to the point where you can code up these simple

tasks yourself

• Best way to learn is by doing!

LLMs for Learning/Studying/Searching

• LLMs are good at this. I use them

myself sometimes

• They are quick and easy, and often

work OK

• But they do not always work, and it’s

not always easy to tell why

• In this class: use the resources we

provide. It will help you in the long

run!

Help Hours

• Start on Monday

• Posted on the website

Tools for Code

• VSCode

• Powerful, useful, free, easy to install, often used in practice

• Occasionally too much for our purposes.

• terminal

• You’ll be using to compile and run Java programs

• Built in to VSCode! Works on Windows, Mac, etc.

• Learning to use the terminal is a part of the course

Why Take CS136?

• To learn about:
• Data Structures

• Effective ways to store and manipulate data

• Advanced Programming

• Combine data structures, programming techniques, and algorithmic design to write
programs that solve interesting and important problems

• Basics of Algorithm Analysis

• Measuring algorithm complexity
• Establishing algorithm correctness

Goals

• Identify basic data structures

• list, stack, array, tree, graph, hash table, and more

• Implement these structures in Java

• Learn how to evaluate and visualize data structures

• Linked lists and arrays both represent lists of items
• Different representations of data
• Different algorithms for manipulating/accessing/storing data

• Learn how to design larger programs that are easier to modify, extend, and

debug

• Have fun!

Course Outline

• Java review

• Basic structures

• Lists, vectors, queues, stacks

• Advanced structures

• Graphs, heaps, trees, dictionaries

• Foundations (throughout semester)

• Vocabulary
• Analysis tools
• Recursion & Induction
• Methodology

Why Java?

Java is Still Popular!

Why Java?

• Java is (still) popular!

• Object-oriented—good for large systems

• Good support for abstraction, extension, modularization

• Automatically handles low-level memory management

• Very portable

How to Think about Java

• Containers lead to scalability,

flexibility, portability

• But they come with overhead!

• Java is the same way

• This class is all about scalang your

CS knowledge

Java Experience

• It’s OK if you’re new to Java, or very rusty

• (I am also quite rusty)

• Let me know if you see any mistakes!

• Goal for this class: figure it out together

Common Themes in This Course

• Identify data for problem

• Identify questions to answer about data

• Design data structures and algorithms to answer questions correctly and

efficiently

• Note: not all correct solutions are efficient

• And vice versa!

• Implement solutions that are robust, adaptable, and reusable

• Example: Shortest Paths in Networks

Example: Shortest paths

Finding Shortest Paths

• The data: road segments

• Road segment: Source, destination, length (weight)

• The question

• Given source and destination, compute the shortest path from source

• The algorithm: Dijkstra’s Algorithm

• The data structures (spoiler alert!)

• Graph: holds the road network in some useful form
• Priority Queue: holds not-yet-inspected edges
• Also uses: Lists, arrays, stacks, ...

• A demo. . . .

Java Intro

Let’s take a look at Java programming

• Next couple lectures: (re)introduction to Java

• Some of you have Java experience; some don’t

• Goal: quickly get everyone up to speed for the first couple labs

• If you are less comfortable with Java, be sure to keep up with readings and

ask questions early on!

Elements of a Java Program

1 public class Hello {
2 public static void main(String[] args) {
3
4
5
6
7 }
8 }

• First line: the “class” the program lives in (basically the box we’re working in).

Must match the name of the file!

• Second line: the “main” function where execution starts

Hello World

1 /*
2 * Hello.java
3 * Author: Sam
4 * Prints a welcome message to the terminal
5 */
6 public class Hello {
7 public static void main(String[] args) {
8 System.out.println("Hello, CS136!") ;
9 }

10 }

Let’s test out the hello world program

• Open it in VSCode

• To compile:

javac Hello.java

• To run:

java Hello

Compiling and Running Code

• You need to compile the code every time you use it.

• Long story short: the computer does a pass over the code, translating it into a

form that’s more useful for it internally

• In pairs: What are some disadvantages of compiling code before it is run?

What do you think some advantages are?

Playing around with Hello World

• How can we change what is printed?

• What happens if we make a mistake?

Notes on Java Syntax

• Multi-line comments: /* and */

• Single-line comments: //

• Code is wrapped in a class declaration

• Everything is (in) a class in Java

• File name must be same as declared class name

• System is a Java class holding an object called out

Semicolons

• Every command needs a semicolon at the end

• (Don’t need at the end of loops, function declarations, classes, etc.)

• It’s annoying. The compiler will tell you if you missed one

	Java Intro

