
10.5 Laboratory: A Stack-Based Language

Objective. To implement a PostScript-based calculator.

Discussion. In this lab we will investigate a small portion of a stack-based lan-
guage called PostScript. You will probably recognize that PostScript is a file
format often used with printers. In fact, the file you send to your printer is a
program that instructs your printer to draw the appropriate output. PostScript
is stack-based: integral to the language is an operand stack. Each operation
that is executed pops its operands from the stack and pushes on a result. There
are other notable examples of stack-based languages, including forth, a lan-
guage commonly used by astronomers to program telescopes. If you have an
older Hewlett-Packard calculator, it likely uses a stack-based input mechanism
to perform calculations.

We will implement a few of the math operators available in PostScript.
To see how PostScript works, you can run a PostScript simulator. (A good

simulator for PostScript is the freely available ghostscript utility. It is available
from www.gnu.org.) If you have a simulator handy, you might try the following
example inputs. (To exit a PostScript simulator, type quit.)

1. The following program computes 1 + 1:

1 1 add pstack

Every item you type in is a token. Tokens include numbers, booleans,
or symbols. Here, we’ve typed in two numeric tokens, followed by two
symbolic tokens. Each number is pushed on the internal stack of operands.
When the add token is encountered, it causes PostScript to pop off two
values and add them together. The result is pushed back on the stack.
(Other mathematical operations include sub, mul, and div.) The pstack

command causes the entire stack to be printed to the console.

2. Provided the stack contains at least one value, the pop operator can be
used to remove it. Thus, the following computes 2 and prints nothing:

1 1 add pop pstack

3. The following “program” computes 1 + 3 ∗ 4:

1 3 4 mul add pstack

The result computed here, 13, is different than what is computed by the
following program:

1 3 add 4 mul pstack

In the latter case the addition is performed first, computing 16.



248 Linear Structures

4. Some operations simply move values about. You can duplicate values—
the following squares the number 10.1:

10.1 dup mul pstack pop

The exch operator to exchange two values, computing 1− 3:

3 1 exch sub pstack pop

5. Comparison operations compute logical values:

1 2 eq pstack pop

tests for equality of 1 and 2, and leaves false on the stack. The program

1 1 eq pstack pop

yields a value of true.

6. Symbols are defined using the def operation. To define a symbolic value
we specify a “quoted” symbol (preceded by a slash) and the value, all
followed by the operator def:

/pi 3.141592653 def

Once we define a symbol, we can use it in computations:

/radius 1.6 def

pi radius dup mul mul pstack pop

computes and prints the area of a circle with radius 1.6. After the pop, the
stack is empty.

Procedure. Write a program that simulates the behavior of this small subset of
PostScript. To help you accomplish this, we’ve created three classes that you
will find useful:

• Token. An immutable (constant) object that contains a double, boolean,

Token

or symbol. Different constructors allow you to construct different Token
values. The class also provides methods to determine the type and value
of a token.

• Reader. A class that allows you to read Tokens from an input stream. The

Reader

typical use of a reader is as follows:

Reader r = new Reader();

Token t;

while (r.hasNext())

{

t = (Token)r.next();

if (t.isSymbol() && // only if symbol:

t.getSymbol().equals("quit")) break;

// process token

}



10.5 Laboratory: A Stack-Based Language 249

This is actually our first use of an Iterator. It always returns an Object

of type Token.

• SymbolTable. An object that allows you to keep track of String–Token

SymbolTable

associations. Here is an example of how to save and recall the value of π:

SymbolTable table = new SymbolTable();

// sometime later:

table.add("pi",new Token(3.141592653));

// sometime even later:

if (table.contains("pi"))

{

Token token = table.get("pi");

System.out.println(token.getNumber());

}

You should familiarize yourself with these classes before you launch into writing
your interpreter.

To complete your project, you should implement the PostScript commands
pstack, add, sub, mul, div, dup, exch, eq, ne, def, pop, quit. Also implement
the nonstandard PostScript command ptable that prints the symbol table.
Thought Questions. Consider the following questions as you complete the lab:

1. If we are performing an eq operation, is it necessary to assume that the
values on the top of the stack are, say, numbers?

2. The pstack operation should print the contents of the operand stack with-
out destroying it. What is the most elegant way of doing this? (There are
many choices.)

3. PostScript also has a notion of a procedure. A procedure is a series of
Tokens surrounded by braces (e.g., { 2 add }). The Token class reads
procedures and stores the procedure’s Tokens in a List. The Reader
class has a constructor that takes a List as a parameter and returns a
Reader that iteratively returns Tokens from its list. Can you augment your
PostScript interpreter to handle the definition of functions like area, be-
low?

/pi 3.141592653 def

/area { dup mul pi mul } def

1.6 area

9 area pstack

quit

Such a PostScript program defines a new procedure called area that com-
putes πr2 where r is the value found on the top of the stack when the
procedure is called. The result of running this code would be

254.469004893

8.042477191680002



250 Linear Structures

4. How might you implement the if operator? The if operator takes a
boolean and a token (usually a procedure) and executes the token if the
boolean is true. This would allow the definition of the absolute value
function (given a less than operator, lt):

/abs { dup 0 lt { -1 mul } if } def

3 abs

-3 abs

eq pstack

The result is true.

5. What does the following do?

/count { dup 1 ne { dup 1 sub count } if } def

10 count pstack

Notes:


