3.10 Laboratory: The Silver Dollar Game

Objective. To implement a simple game using Vectors or arrays.

Discussion. The Silver Dollar Game is played between two players. An arbitrar-
ily long strip of paper is marked off into squares:

The game begins by placing silver dollars in a few of the squares. Each square
holds at most one coin. Interesting games begin with some pairs of coins sepa-
rated by one or more empty squares.

Ol 100 O /

The goal is to move all the n coins to the leftmost n squares of the paper.
This is accomplished by players alternately moving a single coin, constrained by
the following rules:

1. Coins move only to the left.
2. No coin may pass another.
3. No square may hold more than one coin.

The last person to move is the winner.

Procedure. Write a program to facilitate playing the Silver Dollar Game. When
the game starts, the computer has set up a random strip with 3 or more coins.
Two players are then alternately presented with the current game state and are
allowed to enter moves. If the coins are labeled 0 through n—1 from left to right,
a move could be specified by a coin number and the number of squares to move
the coin to the left. If the move is illegal, the player is repeatedly prompted to
enter a revised move. Between turns the computer checks the board state to
determine if the game has been won.
Here is one way to approach the problem:

1. Decide on an internal representation of the strip of coins. Does your rep-
resentation store all the information necessary to play the game? Does
your representation store more information than is necessary? Is it easy to
test for a legal move? Is it easy to test for a win?

2. Develop a new class, CoinStrip, that keeps track of the state of the play-
ing strip. There should be a constructor, which generates a random board.
Another method, toString, returns a string representation of the coin
strip. What other operations seem to be necessary? How are moves per-
formed? How are rules enforced? How is a win detected?



68

Vectors

Hint: When
flipped, the
Belgian Euro is
heads

149 times

out of 250.

3.

Implement an application whose main method controls the play of a single
game.

Thought Questions. Consider the following questions as you complete the lab:

1.

How might one pick game sizes so that, say, one has a 50 percent chance
of a game with three coins, a 25 percent chance of a game with four coins,
a 121 percent chance of a game with five coins, and so on? Would your
technique bias your choice of underlying data structure?

How might one generate games that are not immediate wins? Suppose
you wanted to be guaranteed a game with the possibility of n moves?

. Suppose the computer could occasionally provide good hints. What op-

portunities appear easy to recognize?

How might you write a method, computerPlay, where the computer plays
to win?

A similar game, called Welter’s Game (after C. P. Welter, who analyzed the
game), allows the coins to pass each other. Would this modification of the
rules change your implementation significantly?

Notes:



