
Vectors

Limitations of arrays

Limitations of arrays
• Arrays can be annoying to work with!

Limitations of arrays
• Arrays can be annoying to work with!

• Fixed size---can’t even create an array unless we
know what size it will be!

Limitations of arrays
• Arrays can be annoying to work with!

• Fixed size---can’t even create an array unless we
know what size it will be!

• No useful methods

• Can only use [] to access specific items

• And get the size of the array with .length

Vectors

Vectors
● Like an OOP version of arrays

Vectors
● Like an OOP version of arrays

● Don’t need to know the size up front

Vectors
● Like an OOP version of arrays

● Don’t need to know the size up front

● Come with other useful methods:

○ Check if an item exists in the Vector

○ “Insert” an item in the middle of the Vector

Vectors
● Like an OOP version of arrays

● Don’t need to know the size up front

● Come with other useful methods:

○ Check if an item exists in the Vector

○ “Insert” an item in the middle of the Vector

● Implemented with a Java class that we can all read

Java and structure5
● We’ll be talking about the structure5 version of

Vectors in this class

● Java has its own version of vectors

○ java.util.vector

○ We won’t use in this class, but it works in a very very similar
way

Vector<E> API (select methods overview)

Vector<E> API (select methods overview)
● get(int), set(int, E)

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)
● clear()

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)
● clear()

● capacity()

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)
● clear()

● capacity()
● ensureCapacity()

Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)
● clear()

● capacity()
● ensureCapacity()

● toString()

Vector Details: Storing Data

Vector Details: Storing Data
Internally, the Vector class stores an array:

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in

the array using an explicit elementCount variable

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in

the array using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our

actual count?

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in

the array using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our

actual count?
○ What happens if we try to add an element but the array is full?

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in

the array using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our

actual count?
○ What happens if we try to add an element but the array is full?

● Overloaded constructor(s) allow us to specify an initial
array size (we’ll call this the Vector’s capacity)

Vector Details: Storing Data
Internally, the Vector class stores an array:

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in

the array using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our

actual count?
○ What happens if we try to add an element but the array is full?

● Overloaded constructor(s) allow us to specify an initial
array size (we’ll call this the Vector’s capacity)
○ Default capacity used if none is provided

Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at
a given index. Vectors use methods.

Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at
a given index. Vectors use methods.

● We can’t use bracket notation for non-array objects. We
must call methods. But internally :

○ v.get(int) uses bracket notation to access elementData[i]

○ v.set(int, E) uses bracket notation to update
elementData[i]

Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at
a given index. Vectors use methods.

● We can’t use bracket notation for non-array objects. We
must call methods. But internally :

○ v.get(int) uses bracket notation to access elementData[i]

○ v.set(int, E) uses bracket notation to update
elementData[i]

Get/set cost is the same as the cost of accessing/updating an
array.

Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

● What does it mean to “append” to a Vector?

Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

● What does it mean to “append” to a Vector?

When we think about performance, we often care most about the "worst case"

Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

● What does it mean to “append” to a Vector?

When we think about performance, we often care most about the "worst case"
● What are the "worst cases" that we need to consider when appending to a

Vector?
● If the Vector’s internal array has room, we can just place the element at the first free index,

and increment the count
● If the Vector’s internal array is full, we need to GROW! This means creating a larger array,

copying everything into it, then adding the new element.
● How big should we make the new array?

Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

● What does it mean to insert into the middle of a Vector?

Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

● What does it mean to insert into the middle of a Vector?

Unlike an array that overwrites the element at a given index, a Vector “creates
room”, then adds the element in that newly emptied space

Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

● What does it mean to insert into the middle of a Vector?

Unlike an array that overwrites the element at a given index, a Vector “creates
room”, then adds the element in that newly emptied space

● How do we create room in the Vector’s internal array?

● Shift all elements *after* the insertion point one space to the right

Vector Details: size()

Vector Details: size()
Vector size is different than Vector capacity.

Vector Details: size()
Vector size is different than Vector capacity.

● Size is how many elements are currently in the underlying Object array

Vector Details: size()
Vector size is different than Vector capacity.

● Size is how many elements are currently in the underlying Object array

● Capacity is the length of the underlying array

Vector Details: size()
Vector size is different than Vector capacity.

● Size is how many elements are currently in the underlying Object array

● Capacity is the length of the underlying array

● How do they differ?
● The array may not be full! (Note: size <= capacity)
● As we add and delete elements, size will fluctuate, but array size cannot change.
● We may “grow” or “shrink” our array by creating a new array and copying items

● When/how we do this has huge implications on performance! We’ll dive into this in
another video

More Vector methods

More Vector methods
● contains(E)

More Vector methods
● contains(E)
● indexOf(E)

More Vector methods
● contains(E)
● indexOf(E)
● remove(E)

More Vector methods
● contains(E)
● indexOf(E)
● remove(E)

You could implement methods to do these on arrays,
but vectors come with them built in.

More Vector methods
● contains(E)
● indexOf(E)
● remove(E)

You could implement methods to do these on arrays,
but vectors come with them built in.

What should they do? How can we implement them in
our Vector class?

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)
○ Note: indexOf(E) is similar, except it returns the index i, or -1 if not found

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)
○ Note: indexOf(E) is similar, except it returns the index i, or -1 if not found

● What if there are multiple copies of the target value?

● No worries! We just return true as soon as we find the first occurrence

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)
○ Note: indexOf(E) is similar, except it returns the index i, or -1 if not found

● What if there are multiple copies of the target value?

● No worries! We just return true as soon as we find the first occurrence

● Note that contains uses .equals, and we can only call
.equals on Objects.

○ We can’t store primitive values in a vector!

Vectors, generic types, and equals()
● We store generic object types in our internal array
● We use equals() (for whatever type E we are

storing in our vector) to see if two things are the
same

● Therefore, cannot store primitive types in a vector!

● Need to use something like Vector<Integer>
instead

Vector Details: remove(E)
remove(E) removes the first occurrence of a value from the Vector

Vector Details: remove(E)
remove(E) removes the first occurrence of a value from the Vector

● Similar to contains: search using equals() to find a match

Vector Details: remove(E)
remove(E) removes the first occurrence of a value from the Vector

● Similar to contains: search using equals() to find a match

● What if there are multiple copies of the target value?

● Delete the first. We stop as soon as we remove the first occurrence

Summary

Summary
Vectors are random-access data structures, like an array, but they add new
functionality

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing
● Resizing

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing
● Resizing
● Searching

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing
● Resizing
● Searching
● Support for “generic” types

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing
● Resizing
● Searching
● Support for “generic” types

Summary
Vectors are random-access data structures, like an array, but they add new
functionality
● Inserting/Removing
● Resizing
● Searching
● Support for “generic” types

The Vector class implements many functions that we will revisit when we discuss
the abstract concept of a “List”

