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Limitations of arrays
• Arrays can be annoying to work with!

• Fixed size---can’t even create an array unless we 
know what size it will be!

• No useful methods

• Can only use [] to access specific items

• And get the size of the array with .length
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Vectors
● Like an OOP version of arrays

● Don’t need to know the size up front

● Come with other useful methods:

○ Check if an item exists in the Vector

○ “Insert” an item in the middle of the Vector

● Implemented with a Java class that we can all read



Java and structure5
● We’ll be talking about the structure5 version of 

Vectors in this class

● Java has its own version of vectors

○ java.util.vector

○ We won’t use in this class, but it works in a very very similar 
way
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Vector<E> API (select methods overview)
● get(int), set(int, E)
● firstElement(), 

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E), 

add(int,E)
● remove(E)
● clear()

● capacity()
● ensureCapacity()

● toString()
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Vector Details: Storing Data
Internally, the Vector class stores an array: 

Object[] elementData;

● The array is not necessarily filled
● We keep track of the number of current elements in 

the array using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our 

actual count?
○ What happens if we try to add an element but the array is full?

● Overloaded constructor(s) allow us to specify an initial 
array size (we’ll call this the Vector’s capacity) 
○ Default capacity used if none is provided
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Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at 
a given index. Vectors use methods.

● We can’t use bracket notation for non-array objects. We 
must call methods. But internally :

○ v.get(int) uses bracket notation to access elementData[i]

○ v.set(int, E) uses bracket notation to update 
elementData[i]

Get/set cost is the same as the cost of accessing/updating an
array.
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Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

● What does it mean to “append” to a Vector?

When we think about performance, we often care most about the "worst case"
● What are the "worst cases" that we need to consider when appending to a 

Vector?
● If the Vector’s internal array has room, we can just place the element at the first free index, 

and increment the count
● If the Vector’s internal array is full, we need to GROW! This means creating a larger array, 

copying everything into it, then adding the new element.
● How big should we make the new array?
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Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

● What does it mean to insert into the middle of a Vector?

Unlike an array that overwrites the element at a given index, a Vector “creates 
room”, then adds the element in that newly emptied space

● How do we create room in the Vector’s internal array?

● Shift all elements *after* the insertion point one space to the right
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Vector Details: size()
Vector size is different than Vector capacity.

● Size is how many elements are currently in the underlying Object array

● Capacity is the length of the underlying array

● How do they differ?
● The array may not be full! (Note: size <= capacity)
● As we add and delete elements, size will fluctuate, but array size cannot change.
● We may “grow” or “shrink” our array by creating a new array and copying items

● When/how we do this has huge implications on performance! We’ll dive into this in 
another video
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More Vector methods
● contains(E)
● indexOf(E)
● remove(E)

You could implement methods to do these on arrays, 
but vectors come with them built in.

What should they do?  How can we implement them in 
our Vector class? 
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Vector Details: contains(E)
contains(E) determines if a value appears in the Vector 

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)
○ Note: indexOf(E) is similar, except it returns the index i, or -1 if not found

● What if there are multiple copies of the target value?

● No worries! We just return true as soon as we find the first occurrence

● Note that contains uses .equals, and we can only call 
.equals on Objects. 

○ We can’t store primitive values in a vector!



Vectors, generic types, and equals()
● We store generic object types in our internal array
● We use equals() (for whatever type E we are 

storing in our vector) to see if two things are the 
same

● Therefore, cannot store primitive types in a vector!

● Need to use something like Vector<Integer> 
instead
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Vector Details: remove(E)
remove(E) removes the first occurrence of a value from the Vector 

● Similar to contains: search using equals() to find a match

● What if there are multiple copies of the target value?

● Delete the first. We stop as soon as we remove the first occurrence
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Summary
Vectors are random-access data structures, like an array, but they add new 
functionality
● Inserting/Removing
● Resizing
● Searching
● Support for “generic” types

The Vector class implements many functions that we will revisit when we discuss 
the abstract concept of a “List”


