CSCI 136
Data Structures &
Advanced Programming

Traversing Trees using lterators

Designing Tree Iterators

: design iterators to dispense items in the
same order that the different tree traversal
algorithms visit nodes.

Designing Tree Iterators

: design iterators to dispense items in the
same order that the different tree traversal
algorithms visit nodes.

*Methods provided by BinaryTree class:

Designing Tree Iterators

: design iterators to dispense items in the
same order that the different tree traversal
algorithms visit nodes.

*Methods provided by BinaryTree class:
‘preorderIterator()
*inorderIterator()
*postorderIterator ()
*levelorderIterator()

Implementing the Iterators

Implementing the Iterators

*lterators should dispense values in same order as
the corresponding traversal method

Implementing the Iterators

*lterators should dispense values in same order as
the corresponding traversal method

: We must phrase algorithm steps in
terms of next () and hasNext ()
*Recursive methods don’t convert as easily, so, let’s start

with the most “straightforward” traversal order: level-
order!

Level-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

GBVOYIR

Level-Order lterator

Level-Order lterator

*Should return elements in same order as processed by
level-order traversal method
*Visit all nodes at depth i before visiting any node at depth i+

Level-Order lterator

*Should return elements in same order as processed by
level-order traversal method
*Visit all nodes at depth i before visiting any node at depth i+
*Must phrase in terms of next () and hasNext ()

*Basic |dea:We “capture” our traversal in a queue
* The queue holds “to be visited” nodes

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {

}

public void reset() {

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {
todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}

public void reset() {

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {
todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}

public void reset() {
todo.clear();

// empty queue, add root
1f (!root.isEmpty()) todo.enqueue(root);

Level-Order lterator

public boolean hasNext() {

¥

public E next() {

Level-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

¥

public E next() {

Level-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {

BinaryTree<E> current = todo.dequeue();
E result = current.value();

Level-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

if (lcurrent.left().isEmpty())
todo.enqueue(current.left());

Level-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
1f (lcurrent.left().1sEmpty())
todo.enqueue(current.left());
1f ('current.right().i1sEmpty())
todo.enqueue(current.right());

Level-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

1f (lcurrent.left().1sEmpty())
todo.enqueue(current.left());

1f ('current.right().i1sEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

Pre-Order lterator

*Should return elements in same order as
processed by pre-order traversal method:
*Visit node, then left subtree, then right subtree

Pre-Order lterator

*Should return elements in same order as
processed by pre-order traversal method:
*Visit node, then left subtree, then right subtree

*Must phrase in terms of next () and
hasNext ()

Pre-Order lterator

*Should return elements in same order as
processed by pre-order traversal method:
*Visit node, then left subtree, then right subtree

*Must phrase in terms of next () and
hasNext ()

*Basic idea: We “simulate recursion” with stack
* The stack holds “partially processed” nodes

Pre-Order lterator

Pre-Order lterator

*Order: node -> left subtree -> right subtree

Pre-Order lterator

*Order: node -> left subtree -> right subtree
|. Constructor: Push root onto TODO stack

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():
* Pop node from TODO stack

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():

* Pop node from TODO stack

* Push right and then left nodes of popped node onto
TODO stack

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():

* Pop node from TODO stack

* Push right and then left nodes of popped node onto
TODO stack

* Return popped node’s value

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():

* Pop node from TODO stack

* Push right and then left nodes of popped node onto
TODO stack

* Return popped node’s value
3. On call to hasNext ():

Pre-Order lterator

*Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack
2. On call to next():

* Pop node from TODO stack

* Push right and then left nodes of popped node onto
TODO stack

* Return popped node’s value
3. On call to hasNext ():
* return !stack.isEmpty()

Pre-Order lterator

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

(Green
/\

Blue Violet

T Green |

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

T
(Blue Violet
S

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\
Blue _ Violet >
/\

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

Indigo Red

GBV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

todo stack

GBVO

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
Blue Violet
/\
Orange

todo stack

Indigo

GBVOI

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

Orange Qeliow®
/< todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {

}

public void reset() {

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

h
public void reset() {

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

public void reset() {
todo.clear();

// stack 1s now empty; push root on TODO
stack

if (('root.isEmpty())
todo.push(root);

Pre-Order lterator

public boolean hasNext() {

h
public E next() {

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

h
public E next() {

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();

E result = old.value();

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();

E result = old.value();

if (lold.right().isEmpty())
todo.push(old.right());

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();

E result = old.value();
if (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().isEmpty())
todo.push(old.left());

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();

E result = old.value();
if (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().isEmpty())
todo.push(old.left());

return result;

Tree Traversal Practice Problems

Tree Traversal Practice Problems

*Prove that 1levelOrder () is correct: that is,
that it touches the nodes of the tree in the
correct order (Hint: induction by level)

Tree Traversal Practice Problems

*Prove that 1levelOrder () is correct: that is,
that it touches the nodes of the tree in the
correct order (Hint: induction by level)

*Prove that 1levelOrder () takes O(n) time,
where n is the size of the tree

Tree Traversal Practice Problems

*Prove that 1levelOrder () is correct: that is,
that it touches the nodes of the tree in the
correct order (Hint: induction by level)

*Prove that 1levelOrder () takes O(n) time,
where n is the size of the tree

*Prove that the PreOrder (or LevelOrder) lterator
visits the nodes in the same order as the
PreOrder (or LevelOrder) traversal method

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

S

Orange Yellow

/\ todo stack

Indigo Red

Violet _ Blue |

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green)
/\

Blue Violet

T Green |

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\
Blue

Yellow

todo stack

BG

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Blue

Yellow
todo stack

N

Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Blue Red |
Yellow
todo stack
Indigo

BGIO

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\
Blue “Violet
/\

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

Orange QB
/< todo stack

Indigo Red

BGIORYV

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

In-Order lterator

In-Order lterator

*Should return elements in same order as
processed by in-order traversal method:
* Traverse left subtree, then node, then right subtree

In-Order lterator

*Should return elements in same order as
processed by in-order traversal method:
* Traverse left subtree, then node, then right subtree

*Must phrase in terms of next () and
hasNext ()

In-Order lterator

*Should return elements in same order as
processed by in-order traversal method:
* Traverse left subtree, then node, then right subtree

*Must phrase in terms of next () and
hasNext ()

*Basic idea: We again “simulate recursion” with
stack

In-Order lterator

* Outline: left -> node -> right

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack
2. On call to next ():

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. On call to next ():
* Pop node from stack

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. On call to next ():

* Pop node from stack
* Push right child and follow left children as far as possible

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. On call to next ():

* Pop node from stack
* Push right child and follow left children as far as possible
* Return node’s value

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. On call to next ():

* Pop node from stack
* Push right child and follow left children as far as possible
* Return node’s value

3. On call to hasNext ():

In-Order lterator

* Outline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. On call to next ():

* Pop node from stack
* Push right child and follow left children as far as possible
* Return node’s value

3. On call to hasNext ():

* return !stack.isEmpty()

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {

}

public void reset() {

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();

}

public void reset() {

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;

}

public void reset() {

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {
todo.clear();

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {
todo.clear();
// stack i1s empty. Push on nodes from root along

// longest “left-only” path

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset() {
todo.clear();
// stack i1s empty. Push on nodes from root along
// longest “left-only” path
BinaryTree<E> current = root;
while (!current.isEmpty()) {
todo.push(current);
current = current.left();

In-Order lterator
public E next() {

In-Order lterator

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value(Q);

In-Order lterator

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();
// we know this node has no unvisited left children;
// 1f this node has a right child,
// we push right child and longest “left-only” path

// else
// top element of stack is next node to be visited

In-Order lterator

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();
// we know this node has no unvisited left children;
// 1f this node has a right child,
// we push right child and longest “left-only” path
// else
// top element of stack i1s next node to be visited
1f (lold.right().isEmpty()) {
BinaryTree<E> current = old.right(Q);
do {
todo.push(current);
current = current.left(Q);
} while (!current.isEmpty());

In-Order lterator

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();
// we know this node has no unvisited left children;
// 1f this node has a right child,
// we push right child and longest “left-only” path
// else
// top element of stack i1s next node to be visited
1f (lold.right().isEmpty()) {
BinaryTree<E> current = old.right(Q);
do {
todo.push(current);
current = current.left(Q);
} while (!current.isEmpty());
¥

return result;

Post-Order lterator

* Outline: left -> right -> node

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack
2. On call to next ():

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack

2. On call to next ():
* Pop node from stack

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack

2. On call to next ():

* Pop node from stack

* Determine whether it was the left or right node of

its parent

* If left child, push parent’s right child and the entire path to leftmost
leaf parent’s right subtree

* Return node’s value

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack

2. On call to next ():

* Pop node from stack

* Determine whether it was the left or right node of

its parent

* If left child, push parent’s right child and the entire path to leftmost
leaf parent’s right subtree

e Return node’s value
3. On call to hasNext ():

Post-Order lterator

* Outline: left -> right -> node
|. Push path to leftmost leaf onto stack

2. On call to next ():

* Pop node from stack

* Determine whether it was the left or right node of

its parent

* If left child, push parent’s right child and the entire path to leftmost
leaf parent’s right subtree

e Return node’s value
3. On call to hasNext ():
* return !stack.isEmpty()

Post-Order lterator
public BTPostorderIterator(BinaryTree<E> root) {

¥
public void reset() {

Post-Order lterator

public BTPostorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

¥
public void reset() {

Post-Order lterator

public BTPostorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

¥
public void reset() {

todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {

todo.push(current); // current now ‘below’
children

1f (current.left().i1sEmpty())
current = current.left(Q);
else
current = current.right(Q);
+ // Top of stack is now left-most unvisited leaf

Post-Order lterator

Post-Order lterator
public E next() {

Post-Order lterator

public E next() {

BinaryTree<E> current = todo.pop();
E result = current.value();

Post-Order lterator

public E next() {

BinaryTree<E> current = todo.pop();
E result = current.value();
if ('todo.isEmpty()) {

BinaryTree<E> parent = todo.get();

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

¥
¥

return result;

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
1f (!'todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
1f (current == parent.left()) {
current = parent.right(Q);
while (!current.isEmpty()) {
todo.push(current);
1f (current.left().i1sEmpty())
current = current.left();
else current = current.right(Q);

¥
¥

return result;

Tree Traversals

Tree Traversals

In summary:

Tree Traversals

In summary:

* In-order:“left, node, right”

Tree Traversals

In summary:
* In-order:“left, node, right”

* Pre-order:“node, left, right”

Tree Traversals

In summary:
* In-order:“left, node, right”
* Pre-order:“node, left, right”

* Post-order:“left, right, node”

Tree Traversals

In summary:

* In-order:“left, node, right”

* Pre-order:“node, left, right”
* Post-order:“left, right, node”

* Level-order: visit all nodes at depth i before
depth i+|

Tree Traversals

In summary:
* In-order:“left, node, right”

* Pre-order:“node, left, right” — Stack

* Post-order:“left, right, node”]

* Level-order: visit all nodes at depth i before
depth i+|

Tree Traversals

In summary:
* In-order:“left, node, right”

* Pre-order:“node, left, right” — Stack

* Post-order:“left, right, node”]

* Level-order: visit all nodes at depth i before } Queue
depth i+|

Traversals & Searching

*We can use traversals for searching trees

Traversals & Searching

*We can use traversals for searching trees
*How might we search a tree for a value!?

Traversals & Searching

*We can use traversals for searching trees

*How might we search a tree for a value!?

: Explore nodes near the root before
nodes far away (level-order traversal)

Traversals & Searching

*We can use traversals for searching trees

*How might we search a tree for a value!
*Breadth-First: Explore nodes near the root before
nodes far away (level-order traversal)

*Depth-First: Search until leaves are reached
* (post-order traversal; but halt when solution found)

Traversals & Searching

*We can use traversals for searching trees

*How might we search a tree for a value!
*Breadth-First: Explore nodes near the root before
nodes far away (level-order traversal)

*Depth-First: Search until leaves are reached
* (post-order traversal; but halt when solution found)

*Which is better?

*Depends on the situation!

* Does the tree structure represent a concept, e.g., distance or
relationship between items?

*Is the tree “sparse” or “dense’™?

Final Thoughts

e|terators continue to provide a useful service:
common structure to enumerate the contents of

a data structures

\We have defined four iterators that let us traverse
the nodes of a tree in a variety of principled ways

*The best iterator for the task at hand will depend
on our problem and our goals. So think critically!

CSCI 136
Data Structures &
Advanced Programming

Alternative Tree Representations

BinaryTree Overheads!?

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

BinaryTree Overheads!?

Green Total # “references” = 4n

P *Since each BinaryTree

. maintains a reference to left,
Blue Violet right, parent, value

S

Orange Yellow

N

Indigo Red

BinaryTree Overheads!?

Green Total # “references” = 4n

P *Since each BinaryTree

. maintains a reference to left,
Blue Violet right, parent, value

/\ *2-4x more overhead than

Orange Yellow vector, SLL, array, ...

N

Indigo Red

BinaryTree Overheads!?

Green

/\

Violet

S

Orange

N

Blue

Indigo

Red

Yellow

*Total # “references” = 4n
*Since each BinaryTree
maintains a reference to left,
right, parent, value
*2-4x more overhead than
vector, SLL, array, ...

*But trees capture successor
and predecessor
relationships that other data
structures don't... unless?

Consider the following (full) tree

Number the Nodes in Level Order

Store them in An Array at that Index!

Array-Based Binary Trees

*How to encode structure of tree in an array:
*Put root at index 0O
*Put the children of node at index i at:

Array-Based Binary Trees

*How to encode structure of tree in an array:
*Put root at index 0O

*Put the children of node at index i at:
: 2i+1

Array-Based Binary Trees

*How to encode structure of tree in an array:
*Put root at index 0O

*Put the children of node at index i at:
: 2i+1
:2i+2

Array-Based Binary Trees

*How to encode structure of tree in an array:
*Put root at index 0O

*Put the children of node at index i at:
: 2i+1
:2i+2
*Put the parent of node j at:

Array-Based Binary Trees

*How to encode structure of tree in an array:
*Put root at index 0O

*Put the children of node at index i at:
eleft(i): 2i+|
eright(i): 2i+2
*Put the parent of node j at:
eparent(j): (j-1)/2
*Note: integer truncation takes care of “rounding”

Array Tree Tradeoffs

Array Tree Tradeoffs

*Why are ArrayTrees good!

Array Tree Tradeoffs

*Why are ArrayTrees good!

*Save space for links

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

*Works well for full or complete trees

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

*Works well for full or complete trees

All levels except last are full and all gaps are at right

* “A complete binary tree of height h is a full binary tree with 0 or more of the
rightmost leaves of level h removed”

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

*Works well for full or complete trees

All levels except last are full and all gaps are at right

* “A complete binary tree of height h is a full binary tree with 0 or more of the
rightmost leaves of level h removed”

*Why bad!?

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

*Works well for full or complete trees

All levels except last are full and all gaps are at right

* “A complete binary tree of height h is a full binary tree with 0 or more of the
rightmost leaves of level h removed”

*Why bad!?

*Could waste a lot of space

Array Tree Tradeoffs

*Why are ArrayTrees good!
*Save space for links

*No need for additional memory to be allocated/garbage
collected

*Works well for full or complete trees

All levels except last are full and all gaps are at right

* “A complete binary tree of height h is a full binary tree with 0 or more of the
rightmost leaves of level h removed”

*Why bad!?
*Could waste a lot of space

Tree of height of n requires 2"!-1 array slots even if
only O(n) elements

We Leave Gaps for Nodes That Could Exist

Final Thoughts

*For “dense” trees, an array representation is
efficient
*There are many contexts where a dense tree is a
reasonable assumption
*|f we can design a data structure that always
preserves tree completeness, we should strongly
consider an array representation
*(Remember this when we get to heaps!)

