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Linear Structures

•General idea: we impose access restrictions on 
our data structure, disallowing 
add/remove/access at arbitrary indices
• No get(int i), set(int i, E value)
• No add(int i), remove(int i)

• Insight: By limiting access, we can actually gain 
some utility—linear structures are useful building 
blocks with important use cases!
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•FIFO: First In – First Out (Queue)
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)
•Java Virtual Machine stack



The Structure5 Universe (+ Linear!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue



Quick Note about Terminology

•Note: Stack interface extends Linear
interface
• Interfaces extend other interfaces
• Classes implement interfaces

• If you look at the structure5 documentation for 
Linear, you will see:
• A list of superinterfaces
• A list of subinterfaces
• A list of implementing classes

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html
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Linear Interface

•How should Linear interface differ from List?
• Should have fewer methods than List interface since 

we are limiting access …
•Methods:
• Inherits all of the Structure interface methods
• add(E value) – Add value to the structure.
• E remove(E o) – Remove value o from the structure.
• size(), isEmpty(), clear(), contains(E val), …

• Adds new methods
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()
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AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about stacks 

(not queues)
• push = add to top of stack
• pop = remove from top of stack
• peek = look at top of stack (do not remove)
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Linear Structure Philosophy

•Why no “random access”? (i.e., no access to 
middle of list)
• Supporting/Providing less functionality can yield:
• Simpler implementations of our algorithms
• Greater algorithmic efficiency

•What should be our Data structure 
implementation approach?
• Use existing structures (Vector, LinkedList), or
• Reimplement “stripped down” versions of those 

structures (same underlying organization) simplified
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Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear

• AbstractStack class (partially) extends AbstractLinear
• Essentially introduces “stack-ish” names for linear methods
• push(E val) is add(E val)
• pop() is remove()
• peek() is get()



Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:



Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills



Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth



Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head



Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

• For each, we implement add, empty, get, remove, size directly
• push, pop, peek are indirectly implemented by abstract class



The Structure5 Universe (+ Stacks!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

StackArray StackList StackVector




