
CSCI 136
Data Structures &

Advanced Programming

Williams College

Linear Structures

•What if we want to impose access restrictions on our lists?

Linear Structures

•What if we want to impose access restrictions on our lists?
• I.e., we only provide one way to add and remove elements from

list

Linear Structures

•What if we want to impose access restrictions on our lists?
• I.e., we only provide one way to add and remove elements from

list
• No longer provide access to middle list elements

Linear Structures

•What if we want to impose access restrictions on our lists?
• I.e., we only provide one way to add and remove elements from

list
• No longer provide access to middle list elements

•Key Examples: removal order depends on the order that
elements were added

Linear Structures

•What if we want to impose access restrictions on our lists?
• I.e., we only provide one way to add and remove elements from

list
• No longer provide access to middle list elements

•Key Examples: removal order depends on the order that
elements were added
• LIFO: Last In First Out

Linear Structures

•What if we want to impose access restrictions on our lists?
• I.e., we only provide one way to add and remove elements from

list
• No longer provide access to middle list elements

•Key Examples: removal order depends on the order that
elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

Examples

Examples

•FIFO: First In – First Out (Queue)

Examples

•FIFO: First In – First Out (Queue)
• Line at dining hall

Examples

•FIFO: First In – First Out (Queue)
• Line at dining hall
•Data packets arriving at a router

Examples

•FIFO: First In – First Out (Queue)
• Line at dining hall
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)

Examples

•FIFO: First In – First Out (Queue)
• Line at dining hall
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)
•Pile of trays at dining hall

Examples

•FIFO: First In – First Out (Queue)
• Line at dining hall
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)
•Pile of trays at dining hall
• Java Virtual Machine stack

Linear Structures

•General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

Linear Structures

•General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices
• No get(int i), set(int i, E value)
• No add(int i), remove(int i)

Linear Structures

•General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices
• No get(int i), set(int i, E value)
• No add(int i), remove(int i)

• Insight: By limiting access, we can actually gain
some utility—linear structures are useful building
blocks with important use cases!

Examples: Dining Hall

•FIFO: First In – First Out (Queue)

•LIFO: Last In – First Out (Stack)

Examples: Dining Hall

•FIFO: First In – First Out (Queue)
•Line at dining hall

•LIFO: Last In – First Out (Stack)

Examples: Dining Hall

•FIFO: First In – First Out (Queue)
•Line at dining hall

•LIFO: Last In – First Out (Stack)
•Pile of plates or cups at dining hall

Examples: Computer Science

•FIFO: First In – First Out (Queue)

•LIFO: Last In – First Out (Stack)

Examples: Computer Science

•FIFO: First In – First Out (Queue)
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)

Examples: Computer Science

•FIFO: First In – First Out (Queue)
•Data packets arriving at a router

•LIFO: Last In – First Out (Stack)
•Java Virtual Machine stack

The Structure5 Universe (+ Linear!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Quick Note about Terminology

•Note: Stack interface extends Linear
interface
• Interfaces extend other interfaces
• Classes implement interfaces

• If you look at the structure5 documentation for
Linear, you will see:
• A list of superinterfaces
• A list of subinterfaces
• A list of implementing classes

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html

Linear Interface

•How should Linear interface differ from
List?

Linear Interface

•How should Linear interface differ from
List?
• Should have fewer methods than List interface

since we are limiting access …

Linear Interface

•How should Linear interface differ from
List?
• Should have fewer methods than List interface

since we are limiting access …
•Methods:

Linear Interface

•How should Linear interface differ from List?
• Should have fewer methods than List interface since

we are limiting access …
•Methods:
• Inherits all of the Structure interface methods
• add(E value) – Add value to the structure.
• E remove(E o) – Remove value o from the structure.
• size(), isEmpty(), clear(), contains(E val), …

Linear Interface

•How should Linear interface differ from List?
• Should have fewer methods than List interface since

we are limiting access …
•Methods:
• Inherits all of the Structure interface methods
• add(E value) – Add value to the structure.
• E remove(E o) – Remove value o from the structure.
• size(), isEmpty(), clear(), contains(E val), …

• Adds new methods
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

AbstractStack

•What methods do we need to define?

AbstractStack

•What methods do we need to define?
• Stack interface methods

AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek

AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about stacks

(not queues)

AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about stacks

(not queues)
• push = add to top of stack

AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about stacks

(not queues)
• push = add to top of stack
• pop = remove from top of stack

AbstractStack

•What methods do we need to define?
• Stack interface methods

•Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about stacks

(not queues)
• push = add to top of stack
• pop = remove from top of stack
• peek = look at top of stack (do not remove)

Linear Structure Philosophy

•Why no “random access”? (i.e., no access to
middle of list)

Linear Structure Philosophy

•Why no “random access”? (i.e., no access to
middle of list)
• Supporting/Providing less functionality can yield:
• Simpler implementations of our algorithms
• Greater algorithmic efficiency

Linear Structure Philosophy

•Why no “random access”? (i.e., no access to
middle of list)
• Supporting/Providing less functionality can yield:
• Simpler implementations of our algorithms
• Greater algorithmic efficiency

•What should be our Data structure
implementation approach?

Linear Structure Philosophy

•Why no “random access”? (i.e., no access to
middle of list)
• Supporting/Providing less functionality can yield:
• Simpler implementations of our algorithms
• Greater algorithmic efficiency

•What should be our Data structure
implementation approach?
• Use existing structures (Vector, LinkedList), or

Linear Structure Philosophy

•Why no “random access”? (i.e., no access to
middle of list)
• Supporting/Providing less functionality can yield:
• Simpler implementations of our algorithms
• Greater algorithmic efficiency

•What should be our Data structure
implementation approach?
• Use existing structures (Vector, LinkedList), or
• Reimplement “stripped down” versions of those

structures (same underlying organization) simplified

Stack Implementations

Stack Implementations

•Array-based stack

Stack Implementations

•Array-based stack

•Vector-based stack

Stack Implementations

•Array-based stack

•Vector-based stack

• List-based stack

Stack Implementations

•Array-based stack
• int top, Object data[]

•Vector-based stack

• List-based stack

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack

• List-based stack

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data

• List-based stack

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add is
O(n) in worst case)

+/– O(n) space overhead

Stack Implementations

•Array-based stack
• int top, Object data[]
• Add/remove from index top

•Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add is
O(n) in worst case)

+/– O(n) space overhead

+ all operations are O(1)
+/– O(n) space overhead

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add is
O(n) in worst case)

+/– O(n) space overhead

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add is
O(n) in worst case)

+/– O(n) space overhead

+ all operations are O(1)
+/– O(n) space overhead

The Structure5 Universe (+ Linear!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Summary Notes on The Hierarchy

Summary Notes on The Hierarchy

• Linear interface extends Structure

Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear

Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear

• AbstractStack class (partially) extends AbstractLinear

Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear

• AbstractStack class (partially) extends AbstractLinear
• Essentially introduces “stack-ish” names for linear methods

Summary Notes on The Hierarchy

• Linear interface extends Structure
• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear

• AbstractStack class (partially) extends AbstractLinear
• Essentially introduces “stack-ish” names for linear methods
• push(E val) is add(E val)
• pop() is remove()
• peek() is get()

Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:

Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

Rounding Out The Hierarchy

•Rundown of classes that extend AbstractStack:
• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

• For each, we implement add, empty, get, remove, size directly
• push, pop, peek are indirectly implemented by abstract class

The Structure5 Universe (+ Stacks!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

StackArray StackList StackVector

