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* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list
* No longer provide access to middle list elements
* Key Examples: removal order depends on the order that
elements were added
* LIFO: Last In First Out
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Linear Structures

* General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

*Noget(int 1),set(int 1, E value)
*Noadd(int 1), remove(int 1)

* Insight: By limiting access, we can actually gain
some utility—Ilinear structures are useful building
blocks with important use cases!
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*FIFO: First In — First Out (Queue)
*Line at dining hall

*LIFO: Last In — First Out (Stack)
*Pile of plates or cups at dining hall
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*FIFO: First In — First Out (Queue)
*Data packets arriving at a router

*LIFO: Last In — First Out (Stack)
e Java Virtual Machine stack



The Structure5 Universe (+ Linear!)

s

Vector SinglyLinkedList DoublyLinkedList




Quick Note about Terminology

* Note: Stack interface extends Linear
interface
* Interfaces extend other interfaces
* Classes implement interfaces

* If you look at the structure5
, you will see:
* A list of superinterfaces
* A list of subinterfaces
* A list of implementing classes


http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html
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Linear Interface

e How should Linear interface differ from List?

e Should have fewer methods than List interface since
we are limiting access ...

* Methods:

* Inherits all of the Structure interface methods

* add(E value) —Add value to the structure.

*E remove(E o) —Remove value o from the structure.

*size(), isEmpty(),clear(),contains(E val), ..
e Adds new methods

* E get () —Preview the next object to be removed.

* E remove () —Remove the next value from the structure.

* boolean empty() —sameas isEmpty()
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AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
(not queues)

* push = add to top of stack
* pop = remove from top of stack
* peek = look at top of stack (do not remove)
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Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)
* Supporting/Providing less functionality can yield:
* Simpler implementations of our algorithms
* Greater algorithmic efficiency

* What should be our Data structure
implementation approach?
e Use existing structures (Vector, LinkedList), or

* Reimplement “stripped down” versions of those
structures (same underlying organization) simplified
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Summary Notes on The Hierarchy

 .inear interface extends Structure
*add(E val)
*empty()
*get()
* remove ()
*size()

(partially) implements L.inear

class (partially) extends
* Essentially introduces “stack-ish” names for linear methods
* push(E val) isadd(E val)

* pop() is remove ()
* peek() isget()



Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:



Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills



Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth



Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth

* StackList<E>
* A singly-linked list with add/remove at head



Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth

* StackList<E>
* A singly-linked list with add/remove at head

* For each, we implement add, empty, get, remove, size directly
* push, pop, peek are indirectly implemented by abstract class



The Structure5 Universe (+ Stacks!)

s

Vector SinglyLinkedList DoublyLinkedList

StackArray StackList StackVector







