CSCI 136
Data Structures &
Advanced Programming

Williams College

Linear Structures

* What if we want to impose access restrictions on our lists?

Linear Structures

* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list

Linear Structures

* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list

* No longer provide access to middle list elements

Linear Structures

* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list
* No longer provide access to middle list elements

* Key Examples: removal order depends on the order that
elements were added

Linear Structures

* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list
* No longer provide access to middle list elements
* Key Examples: removal order depends on the order that
elements were added

e LIFO: Last In First Out

Linear Structures

* What if we want to impose access restrictions on our lists?

* |.e., we only provide one way to add and remove elements from
list
* No longer provide access to middle list elements
* Key Examples: removal order depends on the order that
elements were added
* LIFO: Last In First Out
* FIFO: First In First Out

Examples

Examples

*FIFO: First In — First Out (Queue)

Examples

*FIFO: First In — First Out (Queue)
*Line at dining hall

Examples

*FIFO: First In — First Out (Queue)

*Line at dining hall
* Data packets arriving at a router

Examples

*FIFO: First In — First Out (Queue)

*Line at dining hall
* Data packets arriving at a router

*LIFO: Last In — First Out (Stack)

Examples

*FIFO: First In — First Out (Queue)

*Line at dining hall
* Data packets arriving at a router

*LIFO: Last In — First Out (Stack)
* Pile of trays at dining hall

Examples

*FIFO: First In — First Out (Queue)

*Line at dining hall
* Data packets arriving at a router

*LIFO: Last In — First Out (Stack)

* Pile of trays at dining hall
 Java Virtual Machine stack

Linear Structures

* General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

Linear Structures

* General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

*Noget(int 1),set(int 1, E value)
*Noadd(int 1), remove(int 1)

Linear Structures

* General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

*Noget(int 1),set(int 1, E value)
*Noadd(int 1), remove(int 1)

* Insight: By limiting access, we can actually gain
some utility—Ilinear structures are useful building
blocks with important use cases!

Examples: Dining Hall

*FIFO: First In — First Out (Queue)

*LIFO: Last In — First Out (Stack)

Examples: Dining Hall

*FIFO: First In — First Out (Queue)
*Line at dining hall

*LIFO: Last In — First Out (Stack)

Examples: Dining Hall

*FIFO: First In — First Out (Queue)
*Line at dining hall

*LIFO: Last In — First Out (Stack)
*Pile of plates or cups at dining hall

Examples: Computer Science

*FIFO: First In — First Out (Queue)

*LIFO: Last In — First Out (Stack)

Examples: Computer Science

*FIFO: First In — First Out (Queue)
*Data packets arriving at a router

*LIFO: Last In — First Out (Stack)

Examples: Computer Science

*FIFO: First In — First Out (Queue)
*Data packets arriving at a router

*LIFO: Last In — First Out (Stack)
e Java Virtual Machine stack

The Structure5 Universe (+ Linear!)

s

Vector SinglyLinkedList DoublyLinkedList

Quick Note about Terminology

* Note: Stack interface extends Linear
interface
* Interfaces extend other interfaces
* Classes implement interfaces

* If you look at the structure5
, you will see:
* A list of superinterfaces
* A list of subinterfaces
* A list of implementing classes

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html

Linear Interface

*How should Linear interface differ from
List?

Linear Interface

*How should Linear interface differ from
List?
* Should have fewer methods than List interface
since we are limiting access ...

Linear Interface

*How should Linear interface differ from
List?
* Should have fewer methods than List interface
since we are limiting access ...

* Methods:

Linear Interface

e How should Linear interface differ from List?

e Should have fewer methods than List interface since
we are limiting access ...

* Methods:

* Inherits all of the Structure interface methods
* add(E value) —Add value to the structure.
*E remove(E o) —Remove value o from the structure.
*size(), isEmpty(),clear(),contains(E val), ..

Linear Interface

e How should Linear interface differ from List?

e Should have fewer methods than List interface since
we are limiting access ...

* Methods:

* Inherits all of the Structure interface methods

* add(E value) —Add value to the structure.

*E remove(E o) —Remove value o from the structure.

*size(), isEmpty(),clear(),contains(E val), ..
e Adds new methods

* E get () —Preview the next object to be removed.

* E remove () —Remove the next value from the structure.

* boolean empty() —sameas isEmpty()

AbstractStack

 What methods do we need to define?

AbstractStack

 What methods do we need to define?
e Stack interface methods

AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
(not queues)

AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
(not queues)

* push = add to top of stack

AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
(not queues)

* push = add to top of stack
* pop = remove from top of stack

AbstractStack

 What methods do we need to define?
e Stack interface methods

* Stack introduces new terms: push, pop, peek

* Only use push, pop, peek when talking about stacks
(not queues)

* push = add to top of stack
* pop = remove from top of stack
* peek = look at top of stack (do not remove)

Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)

Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)
* Supporting/Providing less functionality can yield:
* Simpler implementations of our algorithms
* Greater algorithmic efficiency

Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)
* Supporting/Providing less functionality can yield:
* Simpler implementations of our algorithms
* Greater algorithmic efficiency

e What should be our Data structure
implementation approach?

Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)
* Supporting/Providing less functionality can yield:
* Simpler implementations of our algorithms
* Greater algorithmic efficiency

* What should be our Data structure
implementation approach?
e Use existing structures (Vector, LinkedList), or

Linear Structure Philosophy

* Why no “random access’ ? (i.e., no access to
middle of list)
* Supporting/Providing less functionality can yield:
* Simpler implementations of our algorithms
* Greater algorithmic efficiency

* What should be our Data structure
implementation approach?
e Use existing structures (Vector, LinkedList), or

* Reimplement “stripped down” versions of those
structures (same underlying organization) simplified

Stack Implementations

Stack Implementations

* Array-based stack

Stack Implementations

* Array-based stack

e \Vector-based stack

Stack Implementations

* Array-based stack

e \Vector-based stack

e List-based stack

Stack Implementations

* Array-based stack
* int top, Object data| |

e \Vector-based stack

e List-based stack

Stack Implementations

* Array-based stack
* int top, Object data| |
* Add/remove from index top

e \Vector-based stack

e List-based stack

Stack Implementations

* Array-based stack
* int top, Object data| |
* Add/remove from index top

e \Vector-based stack
e \Vector data

e List-based stack

Stack Implementations

* Array-based stack
* int top, Object data| |
* Add/remove from index top

* Vector-based stack
e Vector data
* Add/remove from tail

e List-based stack

Stack Implementations

* Array-based stack
* int top, Object data| |
* Add/remove from index top

* Vector-based stack
e Vector data
* Add/remove from tail

e List-based stack
e SLL data

Stack Implementations

* Array-based stack
* int top, Object data| |
* Add/remove from index top

* Vector-based stack
e Vector data
* Add/remove from tail

e List-based stack
e SLL data
e Add/remove from head

Stack Implementations

e Array-based stack + all operations are O(1)
- int top, Object datal] — wasted/run out of space

* Add/remove from index top

* Vector-based stack
e Vector data
* Add/remove from tail

e List-based stack
e SLL data
e Add/remove from head

Stack Implementations

e Array-based stack + all operations are O(1)
- int top, Object datal] — wasted/run out of space

* Add/remove from index top

* Vector-based stack +/— most ops are O(1) (add is
e \Vector data O(n) in worst case)
* Add/remove from tail +/— O(n) space overhead

e List-based stack
e SLL data
e Add/remove from head

Stack Implementations

* Array-based stack

* int top, Object data| |
* Add/remove from index top

* Vector-based stack
e Vector data
* Add/remove from tail

e List-based stack
e SLL data
* Add/remove from head

+ all operations are O(1)
— wasted/run out of space

+/— most ops are O(1) (add is
O(n) in worst case)
+/— O(n) space overhead

+ all operations are O(1)
+/— O(n) space overhead

Stack Implementations

* structure5.StackArray

* int top, Object data| |
* Add/remove from index top

e structureb5.StackVector
e VVector data
* Add/remove from tail

e structureb5.StackList
e SLL data
* Add/remove from head

Stack Implementations

e structure5.StackArray +all operationsare O(1)
« int top, Object data[] — wasted/run out of space

* Add/remove from index top

e structureb5.StackVector
e VVector data
* Add/remove from tail

e structureb5.StackList
e SLL data
* Add/remove from head

Stack Implementations

e structure5.StackArray +all operationsare O(1)
« int top, Object data[] — wasted/run out of space

* Add/remove from index top

+/— most ops are O(1) (add is
O(n) in worst case)
+/— O(n) space overhead

e structureb5.StackVector
e VVector data
* Add/remove from tail

e structureb5.StackList
e SLL data
* Add/remove from head

Stack Implementations

* structure5.StackArray

* int top, Object data| |
* Add/remove from index top

e structureb5.StackVector
e VVector data
* Add/remove from tail

e structureb5.StackList
e SLL data
* Add/remove from head

+ all operations are O(1)
— wasted/run out of space

+/— most ops are O(1) (add is
O(n) in worst case)
+/— O(n) space overhead

+ all operations are O(1)
+/— O(n) space overhead

The Structure5 Universe (+ Linear!)

e

Vector SinglyLinkedList DoublyLinkedList

Summary Notes on The Hierarchy

Summary Notes on The Hierarchy

* L,inear interface extends Structure

Summary Notes on The Hierarchy

* Linear interface extends Structure
*add(E val)
* empty ()
*get()
* remove ()
*size()

Summary Notes on The Hierarchy

* Linear interface extends Structure
*add(E val)
* empty ()
*get()
* remove ()
*size()

(partially) implements L.inear

Summary Notes on The Hierarchy

* Linear interface extends Structure
*add(E val)
* empty ()
*get()
* remove ()
*size()

(partially) implements L.inear

class (partially) extends

Summary Notes on The Hierarchy

 .inear interface extends Structure
*add(E val)
*empty()
*get()
* remove ()
*size()

(partially) implements L.inear

class (partially) extends
* Essentially introduces “stack-ish” names for linear methods

Summary Notes on The Hierarchy

 .inear interface extends Structure
*add(E val)
*empty()
*get()
* remove ()
*size()

(partially) implements L.inear

class (partially) extends
* Essentially introduces “stack-ish” names for linear methods
* push(E val) isadd(E val)

* pop() is remove ()
* peek() isget()

Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth

Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth

* StackList<E>
* A singly-linked list with add/remove at head

Rounding Out The Hierarchy

* Rundown of classes that extend AbstractStack:

* StackArray<EkE>
* holds an array of type E
* add/remove at high end
* Can’t add once the array fills

* StackVector<eE>
* Similar to StackArray<E>, but with a vector for dynamic growth

* StackList<E>
* A singly-linked list with add/remove at head

* For each, we implement add, empty, get, remove, size directly
* push, pop, peek are indirectly implemented by abstract class

The Structure5 Universe (+ Stacks!)

s

Vector SinglyLinkedList DoublyLinkedList

StackArray StackList StackVector

